
An Hierarchical and Technology Independent Design Rule Checker

T. G. R. van Leuken

J. Liedorp

Circuits and Systems Group

Department of Electrical Engineering

Delft University of Technology

The Netherlands

Abstract

This paper describes a uniform and new approach to a technology

independent and hierarchical artwork verification method. It is based upon

the ’augmented instance’ of a cell and the stateruler scan algorithm. By

making an hierarchical instance of a cell, the cell is made independent of

other cells. The artwork verification programs based upon the two

mentioned concepts exploit the hierarchy and repetition present in the

layout description of an integrated circuit. That way the run time and

memory requirements are no longer a function of the number of layout

primitives in the fully instanced integrated circuit, but only of the number

of primitives defined in the original hierarchical layout description. In the

method of artwork verification described in this paper the design rules that

can be tested upon are based upon the presence of combinations of masks.

All combinations of masks can be tested with respect to each other, so the

programs for the verification of the artwork are largely technology

independent. Aside from handling the verification in an hierarchical

manner, the main problem addressed by the method is the efficient

handling of the large class of possible design rules. We describe the

concepts and their implementation. The results are illustrated by some

examples. The techniques presented have been implemented for paraxial

geometrics. They also are usable in the general context.

Copyright © 1988-2003 by the authors.

All rights reserved.

Date: October, 1986

Last revision: May, 2003.

An Hierarchical DRC 1

1. Introduction

The growing complexity of the artwork of integrated circuits necessitates the use of

structured design methods. An important issue in this respect is the possibility to use

hierarchy in the description of an integrated circuit, i.e. a cell in a description may call

another cell etc. In most artwork description languages this concept of hierarchy is

present. For efficiency reasons it is very desirable that programs that are involved with

the design and verification of an integrated circuit can exploit this hierarchy. The

following demands are made on our system:

a. The freedom of the designer’s methodology should in no way be impaired by the

tools (for that reason we will not use the notion ’hierarchical protection frame’).

b. Minimal complexity both in the scanning and in the handling of the multitude of

design rules must be achieved.

c. The hierarchy must be exploited as much as possible.

In this paper we will show a method for artwork verification that optimally exploits this.

We will describe the underlaying principles and describe the way they are used to form an

efficient way for artwork verification.

In section 2 we will define the ’augmented instance’ of a cell. In doing so we will be able

to see an hierarchical cell description as the composition of a number of independent

augmented cell instances.

The augmented instances are made independent by requiring that cells are interconnected

by means of ’terminals’. We will define a terminal as an area in a cell on a certain mask

where primitives of other cells, defined in the same mask, may overlap. A difference

between our approach and that of Newell and Fitzpatric [1] is that our approach

preserves the cell hierarchy in its original form.

In section 3 we will discuss the conversion of the augmented instances to line segments.

The algorithm for doing so will be based upon the stateruler scan algorithm. This

algorithm also forms the basis for the artwork verification programs discussed in the next

sections.

In section 4 we will discuss the artwork verification programs, using the line segments as

input.

In section 5 some results of tests with the programs mentioned will be given. It turns out

that the algorithm indeed is linear with respect to the number of primitives in the cell

under test, as was already stated in [2].

Section 6 at last will give some conclusions.

The Nelsis IC Design System

An Hierarchical DRC 2

2. Augmented Instancing of a cell

The layout description of an integrated circuit is usually available as an hierarchy of cells,

in which each cell is made up of primitives (rectangles, wires etc.) and references to other

cells. The basic problem we meet when we try to exploit the hierarchy is the influence

the cells can have on each other. Consider for instance the cell given in figure 2.1. To

interconnect the cells m2 and m3, referenced in cell m1, among themselves as well as

with the primitives defined in cell m1, primitives of different cells have to overlap.

Cell m2
Cell m3

Cell m1

Figure 2.1. Cell interconnection

These primitives necessarily cross an imaginary boundary that can be drawn at some

distance around the cell to protect its contents from disturbances from the outside. The

problem now is that the analysis of two instances of the same cell can be quite different.

For instance in the case of artwork checking, the interfringing primitives may create new

errors or, conversely remove errors that were previously present. Also new and unwanted

elements may be generated by overlapping primitives originating from different cells.

The solution we propose was developed with existing design practice in mind. It limits

the designer in some ways, but leaves him free as much as possible. The restrictions

imposed on an individual cell design are:

The Nelsis IC Design System

An Hierarchical DRC 3

1. The referenced cells should be free of design rule errors.

2. The implied circuit of the cells referenced may not be changed as a result of

interfringing primitives.

To make a consistent design system we will have to insure that these restrictions are

obeyed. The first restriction is obeyed almost automatically. Giv en a design rule checker

it suffices to check the cells in the cell hierarchy individually. The second one is more

difficult. By checking the places where primitives of different cells have an overlap, and

signaling if they do so, the violations of the second rule can be discovered too. This

check is carried out in the program nbool(see section 4). In the sequel we shall assume

that the mask data is given in the form of an ordered line segment file, one per mask, with

extra masks for the intercell terminals (see further). Such files can be obtained by the

same type of algorithm as for the design rule checker, see section 3.

To handle the hierarchical design rule checker, we define the ’augmented cell instance’

of a cell. It contains the information necessary for the checking of the design rules, of the

cells independently from its subcells. It can also handle the extraction of the circuit from

the artwork. (see the paper on extract on this volume). Crucial in the definition of the

augmented cell instance is the concept of ’active region’. The active regions of a cell

surround the places where the implied circuits of the referenced cells can be changed, or

the design rules might be violated. We associate an active region with each primitive

defined in the cell, as well as with each overlap of cell frames. A cell frame is an

orthogonal rectangle that surrounds a cell as close as possible. The active regions

associated with the primitives of a cell are determined by growing the dimensions of the

primitives with a constant, but mask dependent parameter, the ’expand_offset’. The

active regions associated with the overlapping cell frames are determined by growing the

dimensions of the overlap region with the maximum of the expand_offsets just

mentioned. Furthermore we define a ’checktype’ to distinguish primitives originating

from different cells. The checktype ’0’ is associated with primitives defined in the top

level cell, all other primitives get a positive integer as checktype.

The program which determines the ’augmented instances’ of cells is the program mkbox.

This program reads from the database the data of the primitives of the cells involved and

the files determining their hierarchy. From this data it makes (for each cell desired) a file

consisting of all the rectangles of the artwork forming the ’augmented instance’ of that

cell. This file also contains the following primitives:

• All rectangles of the top level cell. Those rectangles have a checktype zero

• All rectangles of sub_cells and sub_sub_cells etc.(recursively) that have an overlap

with one of the active regions of the rectangles of the top level cell. As their

checktype these rectangles have a positive integer characteristic for the cell they

originate from.

The Nelsis IC Design System

An Hierarchical DRC 4

• All rectangles of sub_cells that have an overlap with the active regions associated

with the overlap of sub_cells. As their checktype these rectangles also have a positive

integer indicating which cell they originate from.

The Nelsis IC Design System

An Hierarchical DRC 5

3. Line Segment Conversion, the Stateruler

The conversion of the orthogonal rectangles to line segments is done based on the

stateruler scan algorithm given in figure 3.1. The algorithm is applicable in many

situations where the artwork data is used as input. E.g. it can equally be used for (layout

to circuit) extraction, design rule checking and the generation of derived geometries

(polygons, groups, pattern generation). The complexity of the algorithm is linear in the

number of edges in the layout. The method is best illustrated with the simple example of

rectangle to vertical line segment conversion.

begin

initialize stateruler

event_status := select_event(event, event_pos);

stateruler_pos := event_pos;

while(event_status is not NIL)

loop

repeat [make a stateruler profile]

insert_event(event, stateruler_pos);

event_status := select_event(event, event_pos);

until(event_status is NIL or stateruler_pos < event_pos);

while(stateruler_pos < event_pos) [analyze stateruler]

stateruler_pos := analyze_stateruler(stateruler_pos);

stateruler_pos := event_pos;

end loop

while(stateruler_pos < MAX_INTEGER) [make final analysis]

stateruler_pos := analyze_stateruler(stateruler_pos);

end

Figure 3.1. Stateruler Scan Algorithm

A stateruler contains a vertical cross section of the layout description as a sorted list of

fields. The stateruler is made by scanning the layout from left to the right. Each field has

its own state, determined by a number of variables. What state variables are used

depends on the application the algorithm is applied to (e.g. design rule verification or

circuit extraction). For rectangle to line segment conversion the state is determined by

the duration, the overlap duration and the checktype. The duration gives the x_value for

which the field will cease to exist. Likewise the overlap duration gives the x_value for

which the overlap of rectangles in the field will cease to exist. If there is no overlap this

variable is undefined. The checktype of a stateruler field depends on the checktype of the

rectangles forming the field.

The algorithm proceeds by making and analyzing what we call stateruler profiles. A

stateruler profile is made by repeatedly selecting an event and inserting that event in the

stateruler. The selection of events is based upon a selection criterion. In the case of

rectangle to line segment conversion the events are the rectangles. The selection criterion

is the smallest left value of the rectangle and if two rectangles have the same left value,

The Nelsis IC Design System

An Hierarchical DRC 6

the smallest bottom value. The procedure ’select_event’ returns the event_status. The

ev ent_status will be ’NIL’ if there are no more events to select.

The insertion of an event is done by comparing the bottom and the top values of the event

with the bottom and top values of the fields in the stateruler, updating the state of the

existing fields and creating new fields if necessary. In the case of rectangle to line

segment conversion the state update is done according to a number of rules derived from

the way we want to represent a polygon by vertical line segments. Consider figure 3.2a.

The rectangles depicted in this figure must be converted to the line segments given in

figure 3.2b.

CT1 CT3

CT2

(a) (b)

Figure 3.2. Polygon and line segment representation

We distinguish several types of line segments, characterized by the occurrence type.

They are:

• START: A start segment will have the interior of the polygon located to the right of it.

• STOP: A stop segment will have the interior of the polygon located to the left of it.

• CHANGE: A change segment indicates a change of checktype. The polygon area to

the right will have the checktype of the CHANGE segment.

• START_OV: A start_ov segment indicates the start of an overlap of two areas. The

overlap is situated to the right of the segment.

• STOP_OV: A stop_ov segment indicates the cease of an overlap. The overlap will be

situated to the left of this segment.

Also combinations of the types mentioned above may occur, so e.g. an segment that is as

well START as CHANGE etc.

Whenever two or more rectangles with different checktypes start to overlap we will

generate a CHANGE segment. The checktype of such a segment will be made zero. At

the end of the overlap another CHANGE segment is generated, restoring the checktype.

The Nelsis IC Design System

An Hierarchical DRC 7

In doing so we can assure that these overlap areas are checked because all areas with

checktype zero will be fully checked. (see section 5).

Whenever a stateruler has been built the routine ’analyze_stateruler’ is called. In the case

of rectangle to line segment conversion this routine generates the line segments based

upon the state information present in the individual fields. The generated segments are

characterized by six parameters:

• x_value: The x_value of the segment.

• occurrence: the occurrence type as described above.

• y_bottom: The y_bottom value of the segment.

• y_top: The y_top value of the segment.

• connection_type: This variable indicates if the segment has connections to the upper

or the lower side or both.

• group_nbr: This variable is an integer indicating what polygon the segment belongs

to.

• checktype: This variable indicates the cell the edge belongs to.

The procedure ’analyze_stateruler’ returns the next position for which the stateruler

should be analyzed again. It returns MAX_INTEGER if that is not necessary.

The final result will be a set of line segment files which together represent the instanced

cell. These files form the basis for subsequent analysis, as discussed in the next two

sections.

The program performing this conversion is the program makevln.

The Nelsis IC Design System

An Hierarchical DRC 8

4. Design Rule Checking

Design rule checking is needed to see if all rules concerning the dimensions of primitives

of a designed integrated circuit obey the rules imposed upon it by the technology the

integrated circuit has to be made in. The checks may involve gap or width checks on a

combination of masks present or a gap or overlap check between two combinations of

masks present. Every technology has its own set of design rules that has to be obeyed.

To make the design rule checker as much independent of a special process as possible, it

is based upon combinations of masks one may specify for a certain technology.

Generally we may split the problem of design rule checking into two parts:

• A part that for a certain rule selects the items involved.

• A part that does the actual checking upon these items.

For a hierarchical design rule checker the first again may be split in two parts:

• A part that picks from the total amount of data of the artwork of the integrated circuit

the minimum part that is needed for the checking of a certain part of the cell. This

part has been described in the previous sections.

• A part that selects the data needed for a check of a certain design rule from this data

gathered.

This second part is carried out by the program nbool, which performs all and, or and

negate operations needed to select mask combinations needed for the checker. It does so

in one pass, with a linear complexity.

As stated the checks to be performed are width, gap and overlap checks. The width

check always concerns one (combination)mask and gap checks may concern one or two

(combination)masks. Overlap checks always concerns two (combination)masks.

Therefore the checker itself is also divided into two parts:

1. A part that does width and gap checks concerning one (combination)mask.

2. A part that does overlap checks and gap checks concerning

two (combination)masks.

So the design rule check is done in three steps:

1. First all the combination masks needed in the check are made by the program

nbool. The files that have to be made must be given in a file booldata, the format of

which is given in appendix A.

2. Then the checks concerning one (combination)mask are carried out by the program

dimcheck. The checks that have to be carried out must be given in a file

dimcheckdata2, the format of which is also given in appendix A.

3. At last the checks concerning two (combination)masks are carried out by the

program dubcheck. The checks that have to be carried out must be given in a file

The Nelsis IC Design System

An Hierarchical DRC 9

dubcheckdata, the format of which is also given in appendix A.

Tw o design rule checkers are in use at the moment:

1. A simple checker autocheck which only checks for width and gap errors per mask;

so errors stemming from combinations of masks will not be looked for. Autocheck

is implemented as a shell_script, which calls the program dimcheck with the correct

options.

How autocheck is called and what options are possible is given in appendix E.

2. The check program dimcheck, which preforms all the design rule checks, so checks

in the same mask as well as checks between (combinations of) masks.

Dimcheck is also implemented as a shell_script. It first calls the program nbool

which determines the vln_files of the combination_masks needed for the checks.

After that the programs dimcheck and dubcheck are called, which use these files to

perform the checks, together with the cell_data of the cell(s) to test and the

technology files dimcheckdata2 and dubcheckdata Dimcheck thereby checks for

width and gap errors in the same (combination)mask and dubcheck checks for gap

and overlap errors between two different (combination)masks.

Schematically this is shown in the next figure:

dubcheck

dimcheck

nbool hierarchical errors

gap & width errors

gap & overlap errors

booldata

dimcheckdata2

dubcheckdata

cell_data

bool*_vln

Figure 4.1. The checker dimcheck

How dimcheck is called and what options are possible is given in appendix E.

A short description of programs mentioned will be given in the next sub_sections.

The Nelsis IC Design System

An Hierarchical DRC 10

4.1 The program nbool

Nbool is a program to generate logical combination masks, which are a combination of

input masks in vertical line segment format (vln format).

As input it uses a file with the description of the logical formulas of the masks to be

made. For a description of this file see appendix A. Also the vln files mentioned in these

formulas and a file with the name of the cell(s) of which the files have to be made is

needed. It uses the stateruler algorithm in a similar way as described in section 3.

Globally the program works as follows:

read ’logical’ file and set up an internal logical structure.

for each cell do {

while not all segments inserted {

read segments and select segment to insert.

if (x_segment != stateruler position) {

check stateruler for hierarchical errors of

the cell.

determine using the internal logical structure

and the layers present in the stateruler

fields what new segments have to be made

to what output_mask.

update stateruler

}

insert new segment

}

check stateruler for hier. errors

output segments from the last stateruler position

add group_numbers to all segments made.

}

First the file which contains the logical combinations to make is read and a structure is

made to indicate what layers must be present for a segment to belong to a certain logical

formula, and what layers must not be present. This structure is used by the analysis of

the stateruler.

The stateruler fields in this case must contain as its state two vectors, one indicating the

masks present in the past(i.e. left of the stateruler) and one indicating the masks that will

be present in the future(i.e. right of the stateruler). Also the check types of the edges

must be stored in it.

In the stateruler process of making and analyzing stateruler profiles events are inserted

which are read from the input vln files. The selection criteria are the x_value of the

segment and its bottom y_value. Whenever during the analysis of a stateruler a change of

layer combinations occurs, which is indicated by the fact that that the past_vector is

different from the future_vector, the past_ and future_vectors are compared with the

logical structure built to see if the field gives rise to the generation of line segments in one

or more of the output masks.

The Nelsis IC Design System

An Hierarchical DRC 11

If in a field different checktypes occur this indicates a possible violation of the

hierarchical rules. These errors are reported by nbool in the following cases:

• Overlap of interconnection layers without the presence of a terminal in that layer.

• Overlap of layers which do not interconnect.

• Overlap of different layers belonging to different cells indicating that one has possibly

created an unwanted element.

For a more detailed description of the program nbool, see appendix B.

4.2 The program dimcheck

The program dimcheck performs gap and width checks on one mask.

As its input it uses a file containing the masks that have to be checked and the widths and

gaps they hav e to obey. Also a reduced gap may be defined for gaplengths smaller then a

certain value. For a description of this file see appendix A. Also the vln files mentioned

in the file above and a file containing the cell(s) to check must be present.

It uses the stateruler algorithm in a similar way as described in section 3. The global way

the program works is:

for each cell do {

for each vln_file do {

while(not all segments read) {

read segment from vln_file.

if(x_segment != stateruler position) {

analyze the stateruler for presence of

width and gap errors.

update stateruler

}

insert segment in the stateruler.

}

}

analyze the last stateruler for width or gap errors

}

}

The events of the algorithm here are the segments read from the vln file.

In the stateruler the following variables are recorded:

• The x_position of the edge in the field previous to the one where the stateruler is

analyzed.

• The status of the layer (PRESENT, NOT_PRESENT, CHG_TO_PRESENT or

CHG_TO_NOTPRESENT).

• The group_number of the edge.

• The group_number of the previous edge in the field.

The Nelsis IC Design System

An Hierarchical DRC 12

• The check_type of the edge, indicating from which cell the edge is originating.

• The check_type of the previous edge in the field.

• The status of an help_layer

Depending on the status of the layer in a stateruler field during analysis, width or

gapchecks are performed in the x_ and y_direction. The group_numbers of the edges

thereby can be used to suppress gap errors that occur between edges of the same polygon.

The check_types are used to suppress errors that occur between edges belonging to the

same sub_cell, as these already will be reported when this sub_cell is checked.

For a more detailed description of the program dimcheck, see appendix C.

4.3 The program dubcheck

The program dubcheck performs gapchecks between to different masks and determines if

a mask is overlapped by another mask with a certain value. As its input it uses a file

containing the files that have to be checked with respect to each other and the distance or

overlap they hav e to obey. Also an integer is given to indicate what kind of gap_check or

overlap_check has to be performed. For a description of this file see appendix A.

Furthermore the vln files stated in the file mentioned above must be present and a file

containing the cells to be checked.

It also uses the stateruler algorithm in a similar way as described in section 3. The global

way the program works is:

for each cell do {

for each line of check_file do {

while (segment_files not empty) {

read segment and select segment to insert

if(x_segment != stateruler position)

analyze the stateruler for the presence of

gap or overlap errors.

update stateruler

}

insert segment in the stateruler

}

analyze last stateruler.

}

}

The events of the algorithm here are the segments read from the two vln files. The

selection criteria again are the x_value and the y_bottom value of the segment.

In the stateruler the status (PRESENT, NOT_PRESENT, CHG_TO_PRESENT or

CHG_TO_NOTPRESENT) of both masks is recorded, together with the groups and

checktypes of the edges and the presence of an helpmask.

The analysis of the stateruler is done in different procedures: one for gap errors and one

for each kind of overlap.

At present the following gap and overlap checks are implemented in dubcheck:

The Nelsis IC Design System

An Hierarchical DRC 13

• gap checks which only report errors for non_overlapping items.

• gap checks which report errors for overlapping and non_overlapping items

• overlap checks for a full overlap

• overlap checks for overlap over two opposite sides

• overlap checks only in places where the helpmask is not present

• overlap checks on sides set earlier by dubcheck

For a more detailed description of the program dubcheck, see appendix D.

The Nelsis IC Design System

An Hierarchical DRC 14

5. Results

The programs described in the previous segments have been written in the program

language C and are running under the UNIX operating system on a HP9000 series 500

machine. All programs in the design rule check system are based upon the stateruler

concept. As shown in [1] this algorithm is linear with respect to the number of edges in

the design of an integrated circuit. So one might expect the checker system also to be

linear in this aspect. To inv estigate this the checker has been applied to a cell containing

a random counter with about 1500 edges. Thereafter the checker has been applied to

arrays of this cell of increasing size. The time needed for the checking is recorded. This

gives the following results:

array number convert check

size of edges (hh:mm:ss) (hh:mm:ss)

1 x 1 1476 38 1:50

2 x 2 5904 2:01 6:57

3 x 3 13284 4:39 16:33

4 x 4 23616 9:59 33:34

5 x 5 36900 15:17 57:15

6 x 6 53136 24:39 1:14:10

7 x 7 72324 28:29 1:49:56

8 x 8 94464 43:40 2:27:32

TABLE 5.1. Checker cpu times

In this table under convert the cpu time to make the line segment files is recorded and

under checker the cpu time needed to perform the boolean operations and do the actual

checks. From this one may conclude that the check time indeed is about linear with the

number of edges. The results have been obtained making no use of the hierarchy of the

cell. The time saved by making use of the hierarchy of course is very much dependent of

the number of repetitions of subcells in the cell. The cell rand_cnt mentioned above, is

hierarchically build up in the following way.

The Nelsis IC Design System

An Hierarchical DRC 15

rand_cnt

feedback
mod2_fb

(3*)

sel_reg8

latch

(8*)

select

(8*)

Figure 5.1. Cell Hierarchy

In the next table the results of the checking of this cell in an hierarchical way and linear

are compared.

linear hierarchical

convert checker convert checker

(seconds) (seconds) (seconds) (seconds)

cell

mod2_fb 9 26 9 26

latch 10 24 10 24

select 8 20 8 20

feedback 13 28 13 23

sel_reg8 32 95 29 56

rand_cnt 38 110 20 34

TABLE 5.2. Comparison between hierarchical and linear expanded cells

We see that the time needed to check the cells in a hierarchical way is much less for top

level cells in this case, even though some overlaps are present. Even more dramatic

changes in time may be expected if the repetitions of cells is greater.

The Nelsis IC Design System

An Hierarchical DRC 16

6. Conclusions

Very important issues in achieving efficient operations in design rule checking are:

1. The exploitation of the hierarchy.

2. The generation of combination masks necessary for the checking of intermask

rules.

3. The complexity of the scan itself.

We believe that we have achieved near optimal results on the three counts. Hierarchy is

handled by making cells independent (for checking purposes) from their sub_cells

through the notions of ’augmented instance’ and ’checktype’. The stateruler concept

allows for a single pass to determine all combination masks needed. The scan itself is

linear in the number of edges. Although at present only implemented for paraxial

geometries the principles are generally applicable. At the moment we are extending the

method to general geometries.

The Nelsis IC Design System

An Hierarchical DRC 17

7. APPENDIX A: Implementation of Technology

The checks that have to be performed on the artwork of an integrated circuit vary from

technology to technology. This appendix deals with the way the design rules must be

implemented in the design rule checker.

In general we may distinguish between two items with respect to the technology:

1. Data about the masks used in a certain technology,such as mask_name, mask_type

etc.

2. Data that are specific for the design rule checker, such as minimum widths and

gaps etc.

The data mentioned under (1 are stored in a technology file for use by all programs

needing it. In this paper we will not discuss this, but assume this file to be present. We

will restrict ourselves to the data mentioned under (2.

This data is stored in four files for each technology present.

1. A file booldata, used by the program nbool, in which the logical combinations of

the combination masks needed are described.

2. A file dimcheckdata1, used by the program dimcheck, which specify the width_ and

gap_checks that have to be carried out if the single_layer checker autocheck is

used.

3. A file dimcheckdata2, used by the program dimcheck, which specify the width_ and

gap_checks in one (combination)mask that have to be carried out if the multy_layer

checker dimcheck is used.

4. A file dubcheckdata, used by the program dubcheck, which specify the gap and

overlap checks that have to be carried out between two different

(combination)layers.

For the format of these files see the next section.

Our design rule checker can handle design rules of one of the following types:

1. Width checks.

To implement a width check on a (combination)mask, the following steps must be

taken:

a. In the case of a combination mask, the logical formula of that mask, if not

yet present, must be included in the file booldata. For the format of this file

see later on under the sub_section on file formats.

b. The (combination)mask to be checked must be given in the file

dimcheckdata1(2). In this file the minimum width of the mask must be given

too. For the format of this input file see the sub_section on file formats later

on in this appendix.

The Nelsis IC Design System

An Hierarchical DRC 18

Examples of rules that can be tested this way are e.g. in the nmos process:

the width of the items of the diffusion mask, the width of the active areas etc.

2. Gap checks between items in one (combination)mask.

To implement a gap check on a (combination)mask, the following steps must be

taken:

a. In the case of a combination mask, the logical formula of that mask, if not

yet present, must be included in the file booldata. For the format of this file

see later on under the sub_section on file formats.

b. The (combination)mask to be checked must be given in the file

dimcheckdata1(2). In this file the minimum gap between areas of the mask

must be given too. The possibility also exists to specify in this input a

reduced gap in case the gaplength is smaller than a certain given value. With

an helpmask specified in dimcheckdata2 one can change the test so, that the

gap is only tested at places where the helpmask is not present. One also can

determine if one wants error_messages from gap_errors within the same

polygon or from polygons with touching corners by specifying an integer

kind in the file dimcheckdata1(2). For the format of this file see the

sub_section on file formats later on in this appendix.

Examples of rules that may be tested this way are in the nmos process e.g.: the gap

between unrelated diffusion areas, the gap between unrelated metal areas etc.

3. Gap checks between two (combination)masks.

To implement a rule for the gapcheck between two masks, the following steps must

be taken:

a. In the case that one or both masks are combination masks, the logical

formulas of these masks, if not yet present, must be added to the file booldata

(for format see sub_section on file formats).

b. The masks between which the check has to be carried out must be added to

the file dubcheckdata. The minimum gap between unrelated areas of the

masks must be specified here too. The possibility here also exist to specify a

reduced gap if the gaplength is smaller than a certain given value.

Furthermore with the integer kind one can specify if gap errors between

overlapping items must be reported or not .

Examples of rules that can be tested this way are e.g. in the nmos process:

the gap between an undercrossing and unrelated diffusion and the gap between

unrelated poly and diffusion.

4. Overlap checks of (combination)masks.

To implement a rule to test an overlap of one combination(mask) over another one,

the following steps must be taken:

The Nelsis IC Design System

An Hierarchical DRC 19

a. In the case that one or both masks are combination masks the logical

formulas for these masks, if not yet present, must be added to the file

booldata (for format see sub_section on file formats).

b. The masks concerned must be given in the file dubcheckdata. Here also the

value of the overlap must be given. One also must specify what kind of

overlap one wants to test, by specifying an integer kind. At present the

possibilities are:

• full overlap

• overlap over two opposite sides

• overlap only where a specified helpmask is not present

• left_right and/or bottom_top overlap only if an internally set array tells to

do so. This array is set by stating tests in dubcheckdata with kind is 4

and kind is 5. These tests also must be defined before this last kind of

overlap can be tested.

Examples of rules that can be tested this way are e.g. in the nmos technology:

overlap of metal over a connect_cut, overlap of poly over an active area etc.

7.1 file formats

This section describes the file_formats of the files used by the design_rule checker.

1. The file booldata, read by the program nbool, contains the logical combination of

masks to be made.

Example:

od_vln nw_vln sp_vln ps_vln con_vln cop_vln

cps_vln cb_vln in_vln sn_vln : filenames

od_vln&!nw_vln : 0 OD.3.1

od_vln&nw_vln : 1 OD.4.1.1

od_vln&sp_vln&!nw_vln : 2 OD.3.2+SP/SN.3.3+4.3

od_vln&ps_vln : 3 PS.3.1+PS.5.1

sp_vln|sn_vln : 4 SP.3.1+SN.3.1

od_vln&ps_vln&nw_vln : 5 SP.3.2+SP.4.2

od_vln&!ps_vln : 6 OD.2.1

od_vln&con_vln&!nw_vln|

od_vln&cop_vln&nw_vln|od_vln&ps_vln : 7 SP/SN.3.3+4.3

od_vln&sn_vln&nw_vln : 8 SP/SN.3.3+4.3

od_vln&ps_vln&!nw_vln : 9 SN.3.2+SN.4.2

od_vln&con_vln : 12 CON.3.1+CON.3.2

od_vln&con_vln&sn_vln&nw_vln : 13 CON.3.3+CON.3.4

od_vln&cop_vln : 14 COP.3.1+COP.3.2

The Nelsis IC Design System

An Hierarchical DRC 20

od_vln&sp_vln&cop_vln&!nw_vln : 15 COP.3.3+COP.3.4

od_vln&ps_vln&cps_vln : 16 CPS.4.1

cps_vln&ps_vln : 17 CPS.4.2+CPS.4.3

con_vln&!in_vln|cop_vln&!in_vln|cps_vln&!in_vln : 18 IN.3.1

con_vln&in_vln|cop_vln&in_vln|cps_vln&in_vln : 19 IN.3.2

cb_vln&in_vln : 20 CB.1.1

The first lines of the file until the first ’:’ contain the names of the input files that

are involved in the formulas to come. After that each line of the file contains the

logical formula to make. In this formula the logical AND operation is indicated by

the character ’&’, the logical OR operation by ’|’ and the negation operation by the

character ’!’. The precedence of the operators is !, &, |. The end of the formula is

indicated by the ’:’ on the line. After this ’:’ a number is given indicating the name

of the file where the result has to be stored. The name of the file becomes bool_nn,

where nn is the number just mentioned. After this number a string is given

indicating what design rule is involved with the operation.

2. The files dimcheckdata1 and dimcheckdata2, read by the program dimcheck,

contain the names of the files to be checked and their width and gap dimensions.

Example:

nw_vln NOFILE 12 15 0 0 0 NW.1.1+NW.2.1

od_vln NOFILE 6 6 0 0 2 OD.1.1+OD.1.2

ps_vln NOFILE 6 6 0 0 2 PS.1+PS.2.1

sp_vln NOFILE 12 12 0 0 0 SP.1.1+SP.2.1

sn_vln NOFILE 12 12 0 0 0 SN.1.1+SN.2.1

con_vln NOFILE 6 6 -1 6 2 CON.1.1+CON.2.1

cop_vln NOFILE 6 6 -1 6 2 COP.1.1+COP.2.1

cps_vln NOFILE 6 6 -1 6 2 CPS.1.1+CPS.2.1

in_vln NOFILE 7 7 0 0 2 IN.1.1+IN.2.1

cb_vln NOFILE 150 80 0 0 2 CB.3.1+CB.4.1

Each line of one of these files must contain the following items in the order given:

1. The name of the file to be checked.

2. Eventually the name of an help_layer; if not needed ’NOFILE’ is coded here.

If a layer is specified errors will only be reported in places where this layer is

not present.

3. The minimum width of elements on the file. If it is zero no check will be

carried out.

4. The minimum gap between two elements on the file. If it is zero no check

will be carried out.

5. The minimum gap between elements on the file for short lengths of the gap.

If a negative value is given here the program dimcheck will interpret it as an

maximum width check, with the maximum value for the width given in the

next item.

The Nelsis IC Design System

An Hierarchical DRC 21

6. The maximum length of the gap for which the reduced gap may be applied,

or if the previous item is negative the maximum value of the width permitted.

7. The value for kind. This variable may have one of the following values:

0: gap_errors between edges of the same polygon and errors stemming

from touching corners will not be reported.

1: errors stemming from touching corners will not be reported, but

gap_errors between edges of the same polygon will be reported.

2: gap_errors between edges of the same polygon will not be reported, but

errors stemming from touching corners will be.

3: gap_errors between edges of the same polygon will be reported as well

as errors stemming from touching corners.

8. A string indicating the design rule(s) involved.

In this example only primary vln files are used. However one may also use vln files

made by nbool, so files bool_nn.

3. The file dubcheckdata, read by the program dubcheck, contains the names of the

files to be checked and the gap and overlap dimensions.

Example:

bool_0 nw_vln NOFILE 0 20 0 0 0 OD.3.1 (OD - NW)

bool_2 nw_vln NOFILE 0 20 0 0 0 OD.3.2 (p+OD - NW)

bool_1 nw_vln NOFILE 10 0 0 0 0 OD.4.1.1 (ovlp NW - OD)

bool_3 ps_vln od_vln 5 0 0 0 2 PS.3.1 (ovlp PS - gate)

od_vln ps_vln NOFILE 0 3 0 0 0 PS.4.1 (PS - OD)

bool_3 od_vln ps_vln 6 0 0 0 2 PS.5.1 (ovlp OD - gate)

bool_1 bool_4 NOFILE 6 0 0 0 0 SP.3.1 (ovlp SP - OD)

bool_5 sp_vln NOFILE 6 0 0 0 1 SP.3.2 (ovlp SP - p_chan_gate)

bool_8 bool_7 od_vln 0 0 0 0 4 SP.3.3+SN.4.3 (det_hor_connection)

bool_8 bool_7 od_vln 0 0 0 0 5 SP.3.3+SN.4.3 (det_ver_connection)

bool_8 bool_6 NOFILE 12 0 0 0 3 SP.3.3+SN.4.3 (ovlp OD - nwell_cont)

od_vln sp_vln NOFILE 0 6 0 0 1 SP.4.1 (SP - OD)

sp_vln bool_5 NOFILE 0 6 0 0 0 SP.4.2 (SP - n_chan_gate)

bool_0 bool_4 NOFILE 6 0 0 0 0 SN.3.1 (ovlp SN - OD)

bool_9 sn_vln NOFILE 6 0 0 0 0 SN.3.2 (ovlp SN - n_chan_gate)

bool_2 bool_7 od_vln 0 0 0 0 4 SN.3.3+SP.4.3 (det_hor_connection)

bool_2 bool_7 od_vln 0 0 0 0 5 SN.3.3+SP.4.3 (det_ver_connection)

bool_2 bool_6 NOFILE 12 0 0 0 3 SN.3.3+SP.4.3 (ovlp OD - substr_cont)

od_vln sn_vln NOFILE 0 6 0 0 1 SN.4.1 (SN - OD)

od_vln bool_9 NOFILE 0 6 0 0 0 SN.4.2 (SN - p_chan_gate)

bool_12 od_vln NOFILE 5 0 0 0 0 CON.3.1 (ovlp OD - CON)

bool_12 ps_vln NOFILE 0 5 0 0 0 CON.3.2 (CON - PS)

bool_13 sn_vln NOFILE 3 0 0 0 0 CON.3.3 (ovlp CON - SN)

sp_vln bool_13 NOFILE 0 3 0 0 0 CON.3.4 (CON - SP)

bool_14 od_vln NOFILE 5 0 0 0 0 COP.3.1 (ovlp OD - COP)

bool_14 ps_vln NOFILE 0 5 0 0 0 COP.3.2 (COP - PS)

The Nelsis IC Design System

An Hierarchical DRC 22

bool_15 sp_vln NOFILE 3 0 0 0 0 COP.3.3 (ovlp COP - SP)

sn_vln bool_15 NOFILE 0 3 0 0 0 COP.3.4 (COP - SN)

bool_17 ps_vln NOFILE 4 0 0 0 0 CPS.4.2 (ovlp CPS - PS)

bool_17 od_vln NOFILE 0 5 0 0 0 CPS.4.3 (CPS - OD)

bool_19 in_vln NOFILE 3 0 0 0 0 IN.3.2 (ovlp CO - IN)

bool_20 in_vln NOFILE 10 0 0 0 0 CB.1.1 (ovlp CB - IN)

Each line of this file must contain the following items in the order given:

1. The first file involved with the operation. In case of overlap check this is the

file of whose elements have to be overlapped.

2. The second file involved with the operation. In case of overlap check this is

the file whose elements have to overlap the elements of the first file.

3. A helpfile involved in the operation. This file is used for checks with a

certain kind. If not needed, ’NOFILE’ is coded.

4. The overlap the second file must have over the first file. If it is zero, no

overlap check will be carried out.

5. The minimal gap between non overlapping elements of the first and second

file. If it is zero no check will be carried out.

6. The minimal gap that must be maintained if the length of the gap is only

small.

7. The maximum gaplength for which the reduced gap value may be applied.

8. The value of the variable kind. For gap checks the value of kind means:

0: do not suppress gap errors of overlapping items.

1: suppress gap errors of overlapping items.

For overlap checks the value of kind means:

0: check for a total overlap.

1: check for overlap over two opposite sides.

2: only check the overlap for places where the helplay is not present.

3: check only at the sides indicated by the conn_dir array. This array will

be filled using checks with kind = 4 and kind = 5.

4: sets the conn_dir array to ’check bottom and top overlap’ if in the same

polygon of the helplayer there is one area of the second layer present to

the left and one to the right of an area of the first layer.

5: sets the conn_dir array to ’check left and right overlap’ if in the same

polygon of the helplayer there is one area of the second layer present to

the bottom and one to the top of an area of the first layer.

9. A string indicating which design rules are involved.

The Nelsis IC Design System

An Hierarchical DRC 23

8. APPENDIX B: The program nbool

8.1 Introduction

The program nbool is the program that performs the logical operations between the

masks of a cell.

The program must be called as:

nbool [-c|-n] [-f] [cell_name]

If nbool is called with the option -c the program will check the input for hierarchical

errors; if option -n is given it will not. If nbool has to operate on input files that

themselves are boolean combination files, the last option has to be chosen, otherwise false

error messages will occur, because nbool then does not know what terminal masks are

involved with the boolean masks. Default hierarchical checks are carried out.

If nbool is called with the option -f the ’current working directory’ will be searched for

the presence of a file booldata. If found this file will be taken as the technology_file for

nbool instead of the standard one for the technology one is working in.

If a cell_name is given this given cell will be tested. If no cell_name is specified nbool

looks for the file exp_dat in which the cell(s) to test then must be given.

So as its input the program needs:

• A file exp_dat containing the cell(s) the program has to be applied to, or a cell_name

specified as argument.

• A file booldata containing the logical formulas the program has to perform upon its

input files. This file is either taken from the library or from the ’current working

directory’.

• The vln files (edge files) of the cell(s) involved in the logical combinations.

As its output the program generates the vln files of the combination masks of the

formulas. Furthermore the program generates error messages when the rules about

hierarchy are violated.

The main parts of the program are:

• The part that decodes the logical formulas given in the file booldata and makes a

structure to check if a certain mask combination belongs to the formula given. This

part will be described in the part about decoding of the design rules.

• The part that builds up and updates the stateruler. This will be described in the part

about the stateruler.

• The part that analyses the stateruler for hierarchical errors. This will be described in

the part about hierarchy check.

The Nelsis IC Design System

An Hierarchical DRC 24

• The part that analyses the stateruler and determines from that what edges have to be

output. This will be described in the part about extract_profile.

• The part that adds the group_numbers to the vln files made. This will be described in

the part about add_groupnumbers.

8.2 Decoding the design rules

Most of the design rules involve more than one mask. To check these rules masks must

be made containing logical combinations of the masks needed for that particular check.

The formulas of the masks that must be made for all the checks of a certain technology

must be given on the file booldata, which is described in appendix A. This section will

describe the way these formulas are stored in memory to allow for an efficient way to

produce all output masks wanted in one pass of the algorithm. In the program this is

done in the routine mk_formstruct.

This routine starts by reading the first line of the file booldata which names all masks

involved in the formulas to be made.

Then the routine ini_heap is entered which makes an input structure. For each file listed

in the input line, and if the hierarchy must be checked also for each terminal file, a

structure is set up containing:

• The name of the mask involved.

• The binary number of the mask. If the name of the mask is known to the process, the

corresponding mask number is taken from it. If not it gets a number twice as high as

the previous unknown mask, starting at the mask_number twice as high as the highest

mask_number known in the process.

• The mask_type of the mask. If the mask is known to the process the mask_type is

copied from it. So terminal masks become 1, connection masks become 2 and the

others become 0. For masks unknown to the process the mask_type is set to

BOLEAN (=3).

• The pointer to the vln file

• The data of the first edge in the vln file. So x_position,y_bottom, y_top, edge_type

and check_type.

The latter data will be updated with a new line segment when the program has inserted

the line segment in the stateruler.

After ini_heap has made this structure the procedure mk_formstruct starts reading the

formulas, line by line. For each line it sets up a c_structure ’form’ which contains:

• The name of the file,where the edges of the mask to form must be written. This name

is bool_xx, where xx is the form_number.

The Nelsis IC Design System

An Hierarchical DRC 25

• A number of buffers to temporarily store the edge data before it is written to the

output file.

• A number curr_place indicating which buffer has been filled last. Initially this

variable is set to -1 to indicate that all buffers are free.

• A pointer to a list of min_term structures, which will be explained later on

• A vulnerability mask containing all masks present in the formula. This variable is not

strictly needed, but added for efficiency reasons.

• A pointer to the next form_struct, or if there is not any a NULL_pointer.

The formula read now is decoded to fill this structure with its information. File names are

detected from the file and also the special characters ! (negotiation) | (logical or) and &

(logical and). Tw o masks are kept for each term of the formula:

• The masks that must be present for a mask combination to be part of the term of that

formula.

• The masks that must NOT be present for a mask combination to be part of the term of

that formula.

These variables are updated in the procedure ’update_masks’ each time a ’&’ or ’|’

character is discovered. If a term of the formula is finished (a | character discovered or

end of formula) these variables mask and not_mask are placed in a structure min_term

and this structure is added to the list of min_term structures of the formula. This is done

in the procedure ’add_minterm’. The variable vuln_mask of the form_structure there is

updated too. Upon leaving the procedure ’mk_formstruct’ we thus have created a

structure like the one shown in figure 8.1

The Nelsis IC Design System

An Hierarchical DRC 26

next

edge buffers

curr_place

mt_pntr

vuln_mask

f_name

form

next

not_mask

mask

min_term

next

not_mask

mask

min_term

next

edge buffers

curr_place

mt_pntr

vuln_mask

f_name

form

next

not_mask

mask

min_term

next

not_mask

mask

min_term

Figure 8.1. the formula structure

8.3 The stateruler

In this chapter the contents of the stateruler and the way it is formed and updated will be

described. In this program the stateruler consists of fields with the following variables:

• yb: the bottom of the field.

• yt: the top of the field.

• chk_type: the check_type of the layers in the field. If the layers have different

check_types this value is set to DIFF_CT (= -2).

• p_check: A pointer to a structure in which the check_types are stored per layer. If all

layers have the same check_type there is no need for such a structure and p_check is a

NULL_pointer.

The Nelsis IC Design System

An Hierarchical DRC 27

• p_chg_ct: A pointer to a list of structures which contain the old check_type and the

mask a change of check_type occurred in. If no change of check_type occurred this

is a NULL_pointer.

• mask_past: This variable bitwise contains the layers present in the field before the

edges at the present x_value are installed.

• mask_fut:This variable bitwise contains the layers that are present after the insertion

of the edges at the present x_value.

• ov_mask: This variable contains bitwise the layers in which an overflow of layers of

different check_type has occurred.

• next: A pointer to the next stateruler field.

• prev: A pointer to the previous stateruler field.

The stateruler is initialized to contain one field, from yb = -MAXINT to yt = MAXINT,

with no masks present,so mask_past = mask_fut = ov_mask = 0 and chk_type set to

INITIAL (=-1). The pointer to the check_type structure is set to NULL. Through the

procedure ’select_edge’ the edges that have to be inserted then are selected from the

edge_heap in such a way, that the edges with the lowest x_coordinate come first and for

edges with the same x_coordinate the one with the lowest bottom value comes first.

The procedure ’insert_edge’ then inserts the edge in the stateruler. In this procedure the

stateruler is scanned from the current field until the new edge and a field in the stateruler

have an overlap. If this occurs, and the values of the bottom of the stateruler field and the

bottom of the new edge do not coincide, the procedure ’split_field’ is called, which splits

the field in two parts, the split point being the bottom value of the new edge. The bottom

and top values of the two created fields are updated and the other values of the old field

are copied into the new field. The current stateruler pointer is set to the top field of the

two fields being created/updated. As long as the top value of the next fields in the

stateruler is not greater then the top value of the new edge, the fields in the stateruler are

updated with information from the new edge. This is done in the procedure ’update_fld’.

In this procedure the values of mask_fut, ov_mask and chk_type are updated, according

to the values of the edge. If the top value of the stateruler field becomes smaller then the

top value of the new edge a split is carried out with the procedure ’split_field’ and the

bottom field of the two newly created/updated fields is updated with the procedure

’update_fld’.

This process of selecting and inserting fields is continued until a new x_value is found.

Then the stateruler (if this option is chosen) is checked for hierarchy errors and after that

analyzed to extract the edges for the boolean files to be made. Then the stateruler is

updated. This is done in the routine ’update_sr’. In this routine first the value of the

mask_past in the fields are set to mask_fut, and the check_types of the stateruler fields are

updated. After that fields containing the same values for the masks and check_types are

joined.

The Nelsis IC Design System

An Hierarchical DRC 28

After being updated a new stateruler is built for the next x_value until all edges have been

read. A schema of the operations is given in figure 8.2

update_sr

extr_profile

check_hierarchy

edge_pos =

sr_pos?

was an edge

present?

select_edge

insert_edge

sr_pos := edge_pos

select_edge

BEGIN

END

update_sr

extr_profile

check_hierarchy

n

n

y

y

Figure 8.2. Stateruler main flow

8.4 The hierarchy check

The checking of the hierarchy rules is carried out in the procedure ’check_hierarchy’.

This procedure contains a loop for checking all of the fields in the stateruler for:

• The ov_mask.

If a bit in this mask is set, indicating that an overlap in the corresponding mask has

occurred, the following is done:

The Nelsis IC Design System

An Hierarchical DRC 29

— If the mask in which the overlap occurred is a connection mask, a check is carried

out to see if the corresponding terminal mask is present. If not an error massage

is generated, telling where the error occurred and in which mask.

— If the layer is not a connection mask a warning massage is generated, telling

where the overlap took place and in which mask.

• The check_types.

If the variable chk_type in the stateruler field is DIFF_CT, indicating that in the field

layers with different check_types are present, the following actions are taken:

A check is made to see if the difference is caused by a check_type 0 in a connection

mask with the presence of a terminal in the same layer, indicating an overlap

permitted. In this case no messages are generated. If the difference is not caused by

the situation described above, a warning massage is generated telling the place where

different checktypes occur, and the checktypes of the layers present.

• Change of checktype.

If a change of checktype in the y_direction occurs the following steps are taken:

• If the change takes place in a connection layer a check is carried out if a terminal

is present there. If not, an ERROR message is generated, stating where the error

occurred and in which layer.

• If the change takes place in another layer a WARNING is generated, stating the

place of the change of checktype and the layer it occurred in.

8.5 Analysis of the stateruler

The analysis of the stateruler, is carried out in the procedure ’extr_profile’. It finds the

edges that have to be output in the vln file of the corresponding formulas. In this

procedure a loop is set up, which examines each stateruler field. If the values of

mask_past and mask_fut differ, indicating that one or more layers have changed state, the

procedure ’buff_edge’, which does the actual work is called. The main flow of this

procedure is given in figure 8.3

The way the program checks if a certain mask combination belongs to a formula is done

using the structure made with mk_formstruct. The mask combination is compared to the

masks and not_masks of the min_terms of the formula. If all the masks present in the

variable mask of the min_term structure are also present in the mask combination to

check, and the masks set in the variable not_mask do not appear in the mask combination

to check, the mask combination belongs to that min_term, and hence to the formula.

According to the presence of mask_past and mask_fut in the formula the pres_flag is set.

If mask_past belongs to the formula and mask_fut does not, pres_flag is set to 1,

indicating a stop edge. If mask_past does not belong to the formula and mask_fut does,

pres_flag is set to -1, indicating a start edge. If mask_past and mask_fut both belong to

the formula, or if they both do not belong to the formula, pres_flag is set to 0, indicating

that no edge has to be output.

The Nelsis IC Design System

An Hierarchical DRC 30

form := next form

more forms left? n

y

return

add_edge update_edge

edge connected to
previous edge?

y n

pres_flag = 0? y
n

mask_fut belongs
to the formula?

y

n

mask_past belongs
to the formula?

y

n

pres_flag :=
prres_flag - 1

pres_flag := 1

form := first form
pres_flag := 0

buff_edge

Figure 8.3. buff_edge main flow

After the value of the pres_flag is established, and the pres_flag = 0, no further actions are

taken. If this value not equals zero, two cases may occur:

• The bottom value of the newly found edge and the top value of the last buffered edge

of the formula are the same and so are their x_positions.

In this case the last buffered edge is updated, i.e. its top value and its connection type

are updated. This is done in the procedure ’update_edge’.

• If the values mentioned above do not coincide, the edge is added to the next place in

the buffer. If all buffers of the formula have been filled, the buffer is appended to the

file, whose name is given in the f_name variable in the form_structure. These actions

are carried out in the procedure ’add_edge’.

The Nelsis IC Design System

An Hierarchical DRC 31

8.6 The generation of the group_numbers(connectivity)

The group_numbers of the edges indicate to which connected region they belong. They

are generated after nbool has generated the edges. This is done on temporary files, which

for efficiency reasons are in binary format. They hav e a boolean name, with bt1 added to

it. For example bool_2bt1.

Now the files generated are read one by one and a pointer structure is set up in the same

way as it is done in i.e. the program makevln. The pointers are added to the file and

written on a file with the addition of bt2 (e.g.bool_2bt2), and the bt1_file is removed from

the system. The bt2 file then is read and the pointers are replaced by their corresponding

group_numbers. Then the edges are written to the boolean file that remains in existence

and is used by the programs dimcheck and dubcheck. These files (e.g bool_2) are in the

known vln_format. The bt2_files are also removed from the system.

The Nelsis IC Design System

An Hierarchical DRC 32

9. APPENDIX C: The program dimcheck

9.1 Introduction

The program dimcheck checks a cell for the presence of width or gap errors in a single

(combination) layer.

The program is called as:

dimcheck [-a|d][-d][-f][-t][-g][cell_name]

The meaning of the options is:

-a The program is used as a part of the single_layer checker autocheck(see

appendix E), and the file dimcheckdata1 is taken as design_rule input_file.

-d The program is used as a part of the multi_layer checker dimcheck(see

appendix E), and the file dimcheckdata2 is taken as design_rule input_file.

-f The program looks for the file dimcheckdata1 (or dimcheckdata2) in the

current working directory instead of taking the standard one for the

technology used.

-t This option has been added for debugging purposes. It generates a lot of

test_data.

-g With this option gap_errors within the same polygon, which otherwise may

be suppressed, are always reported.

cell_name The name of the cell to be tested. If not specified the program looks for a file

exp_dat in which the cell(s) to be tested must be given.

So as its input the program needs:

• A file exp_dat containing the cell(s) dimcheck has to be applied to, or a cell_name as

argument in the call of the program.

• A file dimcheckdata1 (or dimcheckdata2) containing the layers to check and the gaps

and widths permitted.

• The vln files of the cell(s) to be tested.

As its output dimcheck generates error messages on the terminal, stating the rule that was

violated and the place where the error occurred.

The program may be divided into two mayor parts:

• One part consisting of the building and updating of the stateruler.

The Nelsis IC Design System

An Hierarchical DRC 33

• A second part consisting of the analysis of the stateruler and the generation of the

error messages from it.

These two parts will be discussed in the sections ’Making and updating the stateruler’ and

’The analysis of the stateruler’ respectively.

9.2 Making and updating the stateruler

In this sections the contents of the stateruler fields and the way they are formed and

updated will be described.

In dimcheck the fields of the stateruler hold the following variables:

• xstart: The x_position in which the the field was started.

• yb: The bottom of the field.

• yt: The top of the field.

• lay_status: The status of the layer. This may be:

— NOT_PRESENT: This means that the layer is not present at the stateruler

position.

— CHG_TO_PRESENT: This means that the layer starts at the stateruler position.

— CHG_TO_NOTPRESENT: This means that the layer stops at the stateruler

position.

— PRESENT: This means that the layer is present at the stateruler position.

• helplay_status: The status of the helplayer if used.

• group: The group in the layer the field belongs to.

• group_old: The group of the edge before the last one.

• chk_type: The checktype of the layer in the field.

• chk_type_old: The checktype of the edge before the last one.

• next: A pointer to the next stateruler field.

• prev: A pointer to the previous stateruler field.

Upon initiation the stateruler consists of one field, reaching from -MAXINT to MAXINT,

with lay_status NOT_PRESENT , xstart = -MAXINT, next and prev pointing to the field

itself and the other variables set to zero.

After the initiation a loop is started in which edges are read from the vln file(s) and

inserted into the stateruler (procedure insert_edge). The loop is continued until all edges

with the same x_value have been inserted. The stateruler for that x_value then is

completed, and an analysis of the stateruler then will take place (procedure extr_profile).

The Nelsis IC Design System

An Hierarchical DRC 34

The stateruler is updated (procedure update_sr) and new vln files are read and inserted to

form the stateruler for the next x_position. This process is repeated until all edges have

been read from the vln file.

The process described above is carried out in the procedure main_check.

As stated above the insertion of new edges in the stateruler is done in the procedure

insert_edge. In this procedure the fields of the stateruler are scanned from the current

position to the topmost position to see if an overlap with the edge to insert is present. If

this is the case and the bottom values of the field and the new edge do not coincide, the

stateruler field is split into two and the variables are copied from the old field. As long as

the top value of the edge is greater then the top value of the stateruler fields, the latter are

updated. If the top value of the new edge becomes smaller as the top value of the

stateruler field, again a split is carried out and the bottom field of the two newly created

fields is updated. The splitting of the fields is carried out in the procedure ’split_fld’, the

updation of the fields is done in the procedure ’update_fld’.

An example is shown in figure 9.1.

stateruler new_edge new_stateruler

split_fld

split_fld

update_fld

update_fld

update_fld

Figure 9.1. Building the stateruler

In the procedure ’update_sr’ the stateruler is updated after being analyzed. This means :

— The lay_status is updated: CHG_TO_PRESENT becomes PRESENT and

CHG_TO_NOTPRESENT becomes NOT_PRESENT.

— The group_nbr, check_type and xstart are updated

— If possible stateruler fields are merged.i.e:

If two adjacent fields have:

— the same checktype

The Nelsis IC Design System

An Hierarchical DRC 35

— the same group_nbr

— the same lay_status

— the same xstart or for both fields holds stateruler position - xstart >=

MAXINFLUENCE

the two fields are merged.

9.3 The analysis of the stateruler

The analysis of the stateruler to detect possible design rule errors is done in the procedure

’extr_profile’. In this procedure all fields of the stateruler are checked for possible design

rule errors. According to the lay_status the following checks are carried out:

• lay_status = PRESENT.

This means that no change of lay_status has taken place, so nothing needs to be

checked.

• lay_status = CHG_TO_PRESENT.

This means that a new area has started. In this case the following checks are carried

out:

— A check to see if the distance between the previous edge and the new edge is great

enough (procedure ’check_xgap’).

— If in the previous stateruler field the layer is not present a check to see if previous

edges are not too close to the bottom of the new edge (procedure

’check_g_circle’).

— If in the next stateruler field the layer is not present a check to see if previous

edges are not too close to the top of the new edge (procedure ’check_g_circle’).

— If in the previous stateruler field the lay_status is not CHG_TO_PRESENT and in

the next stateruler field the lay_status is not PRESENT (in which cases an error, if

any, already has been reported), a check of the y_width of the edge starting in the

stateruler field is carried out (procedure ’check_ywidth’).

• lay_status = CHG_TO_NOTPRESENT

This means that an area has stopped. In this case the following checks are done:

— A check to see if the area that stopped was not too small in the x_direction

(procedure ’check_xwidth’).

— If the previous stateruler field the lay_status is not CHG_TO_NOTPRESENT (in

which case an error, if any, already has been reported) and in the previous

stateruler field the lay_status is PRESENT a check is carried out to see if the area

that is left under the stop is not too small in the y_direction (procedure

’check_ywidth’).

The Nelsis IC Design System

An Hierarchical DRC 36

— Under these conditions also a check is done to see if the layer is present in a

circular area around the bottom of the stateruler field (procedure

’check_w_circle’).

— If the layer is not present in the previous stateruler field a gap check is done to

see if the gap between the stopped area and the first area below it is not too small

(procedure ’check_ygap’).

— If the next stateruler field the lay_status is not CHG_TO_NOTPRESENT (in

which case an error, if any, already has been reported) and in the next stateruler

field the lay_status is PRESENT a check is carried out to see if the area that is left

above the stop is not too small in the y_direction (procedure ’check_ywidth’).

— Under these conditions also a check is done to see if the layer is present in a

circular area around the top of the stateruler field (procedure ’check_w_circle’).

— If the layer is not present in the next stateruler field a gap check is done to see if

the gap between the stopped area and the first area over it is not too small

(procedure ’check_ygap’).

• lay_status = NOT_PRESENT.

This means that no change of lay_status has taken place, so nothing needs to be

checked.

The width_checks mentioned will only be carried out if according to the file

dimcheckdata1(2) the width_flag is set. The gap_checks are only carried out if the

gap_flag is set and if the helplay_status is NOT_PRESENT, if a helplayer is specified.

In the check routines check_xwidth etc. gap and width errors will not be generated if the

edges have the same checktype (except if it is zero). This situation means that the error

originates from a subcell and has already been reported there.

The Nelsis IC Design System

An Hierarchical DRC 37

10. APPENDIX D: The program dubcheck

10.1 Introduction

The program dubcheck is the program that does the checking for overlap and gap errors

between two (combination)masks.

It is called as:

dubcheck [-f][-t][cell_name]

The meaning of the options is:

-f The program looks for the file dubcheckdata in the current working directory

instead of taking the standard one from the technology used.

-t This option has been added for debugging purposes. In generates a lot of

test_data.

cell_name The name of the cell to be tested. If not specified dubcheck looks for a file

exp_dat in which the cell(s) to be tested must be given.

So as its input the program needs:

• A file exp_dat containing the cell(s) dubcheck has to be applied to, or a cell_name

must be given in the call of the program.

• A file dubcheckdata containing the layers to check and the overlaps and gaps

permitted.

• The vln files of the cell(s) to be tested.

As its output dubcheck generates error messages on the terminal, stating the rule that was

violated and the place where the error occurred.

The program may be divided into two mayor parts:

• One part consisting of the building and updating of the stateruler.

• A second part consisting of the analysis of the stateruler and the generation of the

error messages from it.

These two parts will be discussed in the chapters ’Making and updating the stateruler’

and ’The analysis of the stateruler’ respectively.

10.2 Making and updating the stateruler

In this chapter the contents of the stateruler fields and the way they are formed and

updated will be described.

The Nelsis IC Design System

An Hierarchical DRC 38

In dubcheck the fields of the stateruler hold the following variables:

• xstart[0]: The x_position of the previous edge of mask1 in the field.

• xstart[1]: The x_position of the previous edge of mask2 in the field.

• yb: The bottom of the field.

• yt: The top of the field.

• lay_status[0]: The status of mask1. This may be:

— NOT_PRESENT: This means that the layer is not present at the stateruler

position.

— CHG_TO_PRESENT: This means that the layer starts at the stateruler position.

— CHG_TO_NOTPRESENT: This means that the layer stops at the stateruler

position.

— PRESENT: This means that the layer is present at the stateruler position.

• lay_status[1]: The status of mask2.

• helplay_status: The status of the helplay.

• group[0]: The group of mask1 in the stateruler field.

• group[1]: The group of mask2 in the stateruler field.

• chk_type[0]: The checktype of mask1 in the stateruler field.

• chk_type[1]: The checktype of mask2 in the stateruler field.

• next: A pointer to the next stateruler field.

• prev: A pointer to the previous stateruler field.

Upon initiation the stateruler consists of one field, reaching from -MAXINT to MAXINT,

with lay_status NOT_PRESENT , xstart = -MAXINT, next and prev pointing to the field

itself and the other variables set to zero.

After the initiation a loop is started reading edges from the vln files (procedure get_vln),

selecting the one with the smallest x_value and the smallest value of y_bottom and

inserting them into the stateruler (procedure insert_edge). The loop is continued until all

edges with the same x_value have been inserted. The stateruler for that x_value then is

completed, and an analysis of the stateruler then will take place (extr_*** procedures).

The stateruler is updated (procedure update_sr) and new vln files are read and inserted to

form the stateruler for the next x_position. This process is repeated until all edges have

been read from the vln file.

The process described above is carried out in the procedure main_check.

As stated above the insertion of new edges in the stateruler is done in the procedure

The Nelsis IC Design System

An Hierarchical DRC 39

insert_edge. This procedure is similar to the one used in the program dimcheck, with

only a difference in the variables that are present in the stateruler fields.

In the procedure ’update_sr’ the stateruler is updated after being analyzed. This means :

• The lay_status is updated: CHG_TO_PRESENT becomes PRESENT and

CHG_TO_NOTPRESENT becomes NOT_PRESENT in lay_status[0] , lay_status[1]

and helplay_status.

• The group_nbr, check_type and xstart are updated for both masks.

• If possible stateruler fields are merged.i.e:

If two adjacent fields have:

— the same checktype for both masks

— the same group_nbr for both masks

— the same lay_status for both masks

— the same xstart or for both fields holds stateruler position - xstart >=

MAXINFLUENCE for both masks

the two fields are merged.

10.3 The analysis of the stateruler

The analysis of the stateruler to detect possible design rule errors is done in the

procedures ’extr_profile’ , ’extr_overlap’ , ’extr_overlap1’ , ’extr_overlap2’ and

’extr_overlap3’. The first procedure is used to detect gap errors, the last ones to detect

overlap errors.

10.3.1 detection of gap errors

In the procedure extr_profile all fields of the stateruler are checked for possible gap

errors. According to the lay_status of the masks the following checks are carried out:

• lay_status[0] = CHG_TO_PRESENT.

This means that an area in mask1 is starting. In this case the following checks are

done:

— A check is carried out to see if mask1 and mask2 do have an overlap here. In this

case the status of mask2 is PRESENT or CHG_TO_PRESENT. No error exists

then and a structure is set up, to indicate that the group of the item in mask1 and

the item in mask2 have an overlap. If other errors occur between these equivalent

groups of mask1 and mask2 they will be suppressed is this is wanted.

— If the masks have no overlap the distance to the last recorded edge of mask2 in the

field is checked.

— If lay_status[0] of the previous or next field in the stateruler is NOT_PRESENT

checks are carried out to see if no error exists in the areas left under respectively

The Nelsis IC Design System

An Hierarchical DRC 40

left above the edge.

• lay_status[1] = CHG_TO_PRESENT.

This means that an area in mask2 is starting. In this case the same checks are carried

out with respect to mask1, as in the previous case with respect to mask2.

• lay_status[0] = CHG_TO_NOTPRESENT

This means that an area in mask1 has stopped. In this case the following checks are

done:

— A check is carried out to see if mask1 and mask2 do have an overlap. An

equivalence of groups then is set up again.

— If no overlap occurs a check is carried out to see if no error occurs at the bottom

of the field and a check is carried out to see if no error occurs at the top of the

field.

• lay_status[1] = CHG_TO_NOTPRESENT.

This means that an area in mask2 has stopped. In this case the same checks are

carried out with respect to mask1, as in the previous case with respect to mask2.

In the check routines no errors will be reported between two edges if they hav e the same

check_type,and this checktype does not equal zero, indicating that the edges stem from

the same instance of a subcell. If the errors exist,they will be reported when the subcell is

checked. If the variable kind is made zero, also no errors between areas of mask1 and

mask2 that have an overlap will be reported. Else these errors will be reported.

The errors found in this case are not immediately shown, but temporarily stored first. In

this way one can suppress purely geometric errors, which turn out to be unimportant

when connectivity is taken into account (this is an important topic in hierarchical design,

because the design rule checker output often gets clothered with unimportant ’faults’

obstructing the really important messages).

10.3.2 detection of overlap errors of kind 0

In the procedure extr_overlap checks are carried out to see if all areas of the first layer are

fully overlapped by a distance overlap by the areas of layer 2. According to the

lay_status of the masks in the stateruler fields the following checks are carried out:

• lay_status[0] = CHG_TO_PRESENT. In this case the next checks are carried out:

— A check to see if lay_status[1] is PRESENT. If not an error is recorded.

— If PRESENT a check to see if the stop of the last area in mask2 in the stateruler

field is at least a distance of overlap smaller then the position of the stateruler.

— Checks to see if the areas left under the bottom of the edge and left upper of the

top of the edge are covered by mask2.

The Nelsis IC Design System

An Hierarchical DRC 41

• lay_status[1] = CHG_TO_NOTPRESENT. In this case the next checks are carried

out:

— A check to see if lay_status[1] is NOT_PRESENT. If not an error is recorded.

— A check to see if no area of mask1 is present over a distance of overlap before the

stop of mask2.

— If not a check to see if mask1 is not present over a distance of overlap under or

above the edge.

— A check to see if mask1 is not present left under the top of the edge or left above

the bottom of the edge.

Errors are reported immediately in this case. The check procedures are such that no

errors are generated if the area of mask1 in the stateruler field has a checktype not equal

zero, indicating it originates from a subcell. In this case the error will already be detected

when the subcell is checked.

10.3.3 detection of overlap errors of kind 1

In the procedure extr_overlap1 checks are carried out to see if all areas of the first layer

are overlapped by a distance overlap by the areas of layer 2 in the x_ or y_direction.

According to the lay_status of the masks in the stateruler fields the following checks are

carried out:

• lay_status[0] = CHG_TO_PRESENT. In this case the next checks are carried out:

— if lay_status[1] = PRESENT, a check is carried out to see if the overlapping area

started at least a distance overlap earlier.

— if lay_status[1] = CHG_TO_PRESENT, checks are carried out to see if the

overlaps over the starting area of layer1 to the top and bottom are great enough.

— if lay_status[1] = NOT_PRESENT or CHG_TO_NOTPRESENT an error is

generated.

• lay_status[1] = CHG_TO_NOTPRESENT. In this case the next checks are carried

out:

— if lay_status[0] = NOT_PRESENT, a check is carried out if the stop edge of the

area to be overlapped has occurred at least a distance overlap before.

— if in the previous stateruler field lay_status[1] = PRESENT and lay_status[0] =

NOT_PRESENT, a check is carried out to see if over a distance of at least overlap

under the stateruler field no area in mask1 is present.

— if in the next stateruler field lay_status[1] = PRESENT and lay_status[0] =

NOT_PRESENT, a check is carried out to see if over a distance of at least overlap

over the stateruler field no area in mask1 is present.

The Nelsis IC Design System

An Hierarchical DRC 42

Errors are reported immediately in this case. The check procedures are such that no

errors are generated if the area of mask1 in the stateruler field has a checktype not equal

zero, indicating it originates from a subcell. In this case the error will already be detected

when the subcell is checked.

10.3.4 detection of overlap errors of kind 2

In the procedure extr_overlap2 checks are carried out to see if all areas of the first layer

are overlapped by a distance overlap by the areas of layer 2 at places where the helplayer

is not present. According to the lay_status of the masks in the stateruler fields the

following checks are carried out:

• lay_status[0] = CHG_TO_PRESENT. In this case the next checks are carried out:

— if helplay_status != PRESENT a check is carried out to see if the overlapping

started at least a distance overlap earlier.

— if in the previous stateruler field lay_status[0] = NOT_PRESENT and the

helplay_status is NOT_PRESENT of CHG_TO_NOTPRESENT here, a check is

carried out to see if the overlap to the bottom is large enough.

— if in the next stateruler field lay_status[0] = NOT_PRESENT and the

helplay_status is NOT_PRESENT of CHG_TO_NOTPRESENT here, a check is

carried out to see if the overlap to the top is large enough.

• lay_status[1] = CHG_TO_NOTPRESENT and helplay_status != PRESENT. In this

case the next checks are carried out:

— A check to see if the mask to overlap does not exist at least for a distance overlap

before the x_position of the overlapping edge.

— If in the previous stateruler field lay_status[1] = PRESENT a check is carried out

to see if the overlap of layer[1] to the bottom of layer[0] is large enough.

— If in the next stateruler field lay_status[1] = PRESENT a check is carried out to

see if the overlap of layer[1] to the top of layer[0] is large enough.

Errors are reported immediately in this case. The check procedures are such that no

errors are generated if the area of mask1 in the stateruler field has a checktype not equal

zero, indicating it originates from a subcell. In this case the error will already be detected

when the subcell is checked.

10.3.5 detection of overlap errors of kind 3

In the procedure extr_overlap3 overlap checks are carried out in accordance to the

direction given in the con_dir array. The latter is initialized if an overlap check with kind

= 4 or kind = 5 is given. According to the lay_status of the masks in the stateruler fields

the following checks are carried out:

• lay_status[0] = CHG_TO_PRESENT. In this case the next checks are carried out:

The Nelsis IC Design System

An Hierarchical DRC 43

— If the direction is (BOTTOM + TOP) a test is carried out to see if the overlap to

the left of the area to overlap is large enough.

— If the direction is (LEFT + RIGHT) tests is carried out to see if the overlaps to the

bottom and the top are large enough.

• lay_status[1] = CHG_TO_NOTPRESENT. In this case the next checks are carried

out:

— If the direction is (BOTTOM + TOP) a test is carried out to see if the overlap to

the right of the area to overlap is large enough.

— If the direction is (LEFT + RIGHT) tests is carried out to see if the overlaps to the

bottom and the top are large enough.

Errors are reported immediately in this case. The check procedures are such that no

errors are generated if the area of mask1 in the stateruler field has a checktype not equal

zero, indicating it originates from a subcell. In this case the error will already be detected

when the subcell is checked.

10.3.6 setting of the con_dir array

The setting of the con_dir array needed for overlap checks with kind = 3 is done in the

procedures det_conn_hor and det_con_ver.

Det_con_hor adds to the appropriate entry in the array conn_arr the value LEFT if, under

presence of the same polygon of the helplay, an item of the second given file is present to

the left of the item of the first given file under consideration. It adds the value RIGHT if

under the same conditions an item of the second file is to the right of the item of the first

file.

Det_con_ver adds to the appropriate entry in the array conn_arr the value BOTTOM if,

under presence of the same polygon of the helplay, an item of the second given file is

present to the bottom of the item of the first given file under consideration. It adds the

value TOP if under the same conditions an item of the second file is to the top of the item

of the first file.

The procedures det_con_hor and det_con_ver are performed if a check with resp. kind =

4 and kind = 5 is present in the file dubcheckdata. To perform an overlap check of kind =

3, the checks with kind = 4 and kind = 5 must be performed first.

The Nelsis IC Design System

An Hierarchical DRC 44

References

1. M. Newell and D.T. Fitzpatrick, ‘‘Exploitation of Hierarchy in Analysis of

Integrated Circuit Artwork,’’ IEEE Trans. on CAD CAD-1(4) pp. 192-200 (Oct.

1982.).

2. J.T. Fokkema and T.G.R. van Leuken, ‘‘An efficient datastructure and algorithm for

VLSI artwork verification,’’ Proc. IEEE ICCD-83, New York, pp. 350-353 (Oct.

1983).

The Nelsis IC Design System

CONTENTS

1. Introduction... 1

2. Augmented Instancing of a cell .. 2

3. Line Segment Conversion, the Stateruler.. 5

4. Design Rule Checking .. 8

4.1 The program nbool... 10

4.2 The program dimcheck .. 11

4.3 The program dubcheck .. 12

5. Results... 14

6. Conclusions... 16

7. APPENDIX A: Implementation of Technology ... 17

7.1 file formats ... 19

8. APPENDIX B: The program nbool .. 23

8.1 Introduction.. 23

8.2 Decoding the design rules.. 24

8.3 The stateruler ... 26

8.4 The hierarchy check ... 28

8.5 Analysis of the stateruler ... 29

8.6 The generation of the group_numbers(connectivity) 31

9. APPENDIX C: The program dimcheck.. 32

9.1 Introduction.. 32

9.2 Making and updating the stateruler.. 33

9.3 The analysis of the stateruler ... 35

10. APPENDIX D: The program dubcheck.. 37

10.1 Introduction.. 37

10.2 Making and updating the stateruler.. 37

10.3 The analysis of the stateruler ... 39

References .. 44

- i -

LIST OF FIGURES

Figure 2.1. Cell interconnection.. 2

Figure 3.1. Stateruler Scan Algorithm .. 5

Figure 3.2. Polygon and line segment representation ... 6

Figure 4.1. The checker dimcheck.. 9

Figure 5.1. Cell Hierarchy .. 15

Figure 8.1. the formula structure... 26

Figure 8.2. Stateruler main flow ... 28

Figure 8.3. buff_edge main flow ... 30

Figure 9.1. Building the stateruler .. 34

- ii -

LIST OF TABLES

TABLE 5.1. Checker cpu times .. 14

TABLE 5.2. Comparison between hierarchical and linear expanded cells................... 15

- iii -

