
SEADIF (4SDF) THE SEADIF PROGRAMMERS MANUAL SEADIF (4SDF)

NAME
seadif - language for sea-of-gates data representation

DESCRIPTION
Seadif is a language that is specially suited for data representation in a sea-of-gates database. It essentially is a subset of the Edif (Electronic Design Interchange F
sion 2.0.0, but it has a number of enhancements.These enhancements mainly deal with convenient layout representation and with a so called "meta hierarch
consists of four levels. At the top are thelibraries, at the second level are thefunctions,at the third level are thecircuits and at the lo
the meta hierarchy is to provide a selection mechanism: each function lists a number of functional equivalent circuits and each circuit list a number of net-equi

The Seadif language is an "open" language. It can be extended while remaining compatibility with the older version. The seadif I/O library
ments and processes only the elements that it recognizes.The following five subsections discuss the Seadif statements currently defined and recognized by the Seadif I/O functions
mentioned insealib (3SDF).Meaning of the --rather informal-- syntax used below to describe the syntax of the Seadif language is as follo

<statement> isa statement or a terminal symbol like
a <string> or a <number>, see below;

<statement>? meanszero or one time <statement>;
<statement>∗ means zero, one or more times <statement>;
<aa> | <bb> means either <aa> or <bb>, not both;
{ <aa> <bb> } groups two statements <aa> and <bb> to

syntacticly form a single statement.

All other symbols represent themselves. Spaces, tabs and newlines are all equivalent. Left and right parenthesis do not need surrounding spaces in order to be recognized, b
language element need either spaces or parenthesis surrounding them.For most statements the order in which they appear is unimportant. This, ho
the LaySlice statement (see below). It also is not true for terminal symbols of type <string> and type <number>.

Terminal symbols of type <number> can be octal, decimal or hex and the format corresponds to the C-syntax, that is, leading ’0’ for octal and leading ’0x’ for he
19 = 0x13. Terminal symbols of type <string> should be quoted with double-quotes (") and they may contain any character e
require quotes but they do require a leading percent (%) if the first position is numeric. For instance, "2towers" is equivalent to %2to
dition...)

The following terminal symbols are <strings>s: <libraryname>, <functionname>, <circuitname>, <cirportname>, <cirinstname>, <layinstname>, <netname>, <b
tributestring> and <layoutname>.

The following terminal symbols are <number>s: <layernumber>, <xposition>, <yposition>, <xlength>, <ylength>, <xoffset>, <yof
<mtx5>, <xleft>, <xright>, <ybottom> and <ytop>.

SEADIF
The Seadif statement is the root of the meta hierarchy. It serves no other purpose than grouping a set of libraries and image descriptions. Synopsis:

<Seadif> ::= (Seadif <string>
<Status>?
<SeadifImage>∗
<Library>∗)

For a description of <SeadifImage> refer tosdfimage (4SDF). The <Status>, <SeadifImage> and <Library> statements may occur in an

LIBRARY
A l ibrary groups a set of related functions that are available in a certain technology. Synopsis:

<Library> ::= (Library <libraryname>
<Technology>?
<Status>?
<Function>∗)

<Technology> ::= (Technology <string>)

The <Technology>, <Status> and <Function> statements may occur in any order.

FUNCTION
A function groups a set of functional equivalent circuits. Synopsis:

Release 3 The Nelsis IC Design System 1

SEADIF (4SDF) THE SEADIF PROGRAMMERS MANUAL SEADIF (4SDF)

<Function> ::= (Function <functionname>
<FunSimulate>?
<FunType>?
<Status>?
<Circuit>∗)

<FunType> ::= (FunType <string>)

<FunSimulate> ::= (FunSimulate <string>)

Normally, FunSimulate refers to a procedure that simulates the behavior of the function. FunType provides additional information for logic synthesis.
Type>, <Status> and <Circuit> statements may occur in any order.

CIRCUIT
A circuit describes a network of (yet other) circuits that implement the function.A circuit also groups layouts that have identical net lists.

<Circuit> ::= (Circuit <circuitname>
<Status>?
<CirPortList>?
<CirInstList>?
<NetList>?
<BusList>?
<Attribute>?
<Layout>∗)

<CirPortList> ::= (CirPortList <CirPort>∗)

<CirPort> ::= (CirPort <cirportname>)

<CirInstList> ::= (CirInstList <CirInst>∗)

<CirInst> ::= (CirInst <cirinstname> <CirCellRef>
<attributestring>?)

<CirCellRef> ::= (CirCellRef <circuitname>
<CirFunRef>?)

<CirFunRef> ::= (CirFunRef <functionname> <CirLibRef>?)

<CirLibRef> ::= (CirLibRef <libraryname>)

<NetList> ::= (NetList <Net>∗)

<Net> ::= (Net <netname> <Joined>)

<Joined> ::= (Joined <NetPortRef>∗)

<NetPortRef> ::= (NetPortRef <cirportname>
<NetInstRef>?)

<NetInstRef> ::= (NetInstRef <cirinstname>)

<BusList> ::= (BusList <bus>∗)

<Bus> ::= (Bus <busname> <NetRef>∗)

2 The Nelsis IC Design System Release 3

SEADIF (4SDF) THE SEADIF PROGRAMMERS MANUAL SEADIF (4SDF)

<Attribute> ::= (Attribute <attributestring>?)

<NetRef> ::= (NetRef <netname> <NetPortRef>∗)

The CirPortList is the list of i/o ports ("terminals") through which the circuit comunicates with other circuits. The CirInstList names all circuits that are one step lo
(note: this isnot the meta hierarchy). The NetList specifies the connections between the CirPorts on this (parent) circuit and the CirPorts on the child circuits listed in the CirInstList.
Sometimes it is convenient to think of a set of Nets as a bus. The Bus statement provides a means for net grouping. WARNING: the current implementation (october 1991) disallo
<NetPortRef>s in a <NetRef>.The Attribute string specifies miscellaneous information about the circuit. For instance, the attrib
the channel length and width. The attributes of a circuit instance usually override the (default) attributes of the instantiated circuit.

LAYOUT
A layout statement describes the geometry of a circuit implementation. Synopsis:

<Layout> ::= (Layout <layoutname>
<Status>?
<LayPortList>?
<LayBbx>?
<LayOffset>?
{<LayInstList> | <LaySlice>}?
<WireList>?)

<LayPortList> ::= (LayPortList <LayPort>∗)

<LayPort> ::= (LayPort <cirportname>
<PortLayer>? <LayPort>?)

<PortLayer> ::= (PortLayer <layernumber>)

<PortPos> ::= (PortPos <xposition> <yposition>)

<LayBbx> ::= (LayBbx <xlength> <ylength>)

<LayOffset> ::= (LayOffset <xoffset> <yoffset>)

<LayInstList> ::= (LayInstList
<LayInst>∗
<LaySlice>∗
<LayInstList>∗)

<LayInst> ::= (LayInst <layinstname> <LayCellRef>
<Orient>?)

<Orient> ::= (Orient <mtx0> <mtx1> <mtx2>
<mtx3> <mtx4> <mtx5>)

<LayCellRef> ::= (LayCellRef <layoutname> <LayCirRef>?)

<LayCirRef> ::= (LayCirRef <circuitname> <LayFunRef>?)

<LayFunRef> ::= (LayFunRef <functionname> <LayLibRef>?)

<LayLibRef> ::= (LayLibRef <libraryname>)

<LaySlice> ::= (LaySlice {vertical | horizontal | chaos}
<LayInst>∗

Release 3 The Nelsis IC Design System 3

SEADIF (4SDF) THE SEADIF PROGRAMMERS MANUAL SEADIF (4SDF)

<LaySlice>∗
<layInstList>∗)

<WireList> ::= (WireList <Wire>∗)

<Wire> ::= (Wire <layernumber> <xleft> <xright>
<ybottom> <ytop>)

The LayPortList lists for each CirPort one or more geometrical representations (LayPorts). A LayPort occupies exactly one grid point indicated by PortPos. The <layernumber> of the
PortLayer (and also of the Wire statement) is interpreted as follows. If <layernumber> is positive then the indicated layer is added to the position. If <layernumber> is ne
the layer 0 - <layernumber> is removed from the position. Currently, the Oceanic sea-of-gates tools interpret the layers 1, 2 and 3 as first metal, second metal and third metal. Contacts
between the image and first metal have <layernumber> 100, contacts between first and second metal have <layernumber> 101 and contacts between second and third metal ha
ernumber> 102.The LayBbx statement declares the bounding box of the layout. The LayOffset specifies a shift with respect to the "basics image", refer to
LayInstList names the layout instances used. The LaySlice statement does exactly the same, but it also specifies a slicing placement for the instances.
the arguments of LaySlice are placed from left to right. The modifier "vertical" specifies ordering from bottom to top. The modifier "chaos" does not specify an
equivalent to LayInstList. The WireList lists all the rectangles that make up the layout. Interpretation of <layernumber> is as described abo

AUTHORS
Patrick Groeneveld and Paul Stravers, Delft University of Technology.

SEE ALSO
sealib(3SDF), sdfread(3SDF), sdfwrite(3SDF), sdfopen(3SDF), sdfclose(3SDF), sdfimage(4SDF).

4 The Nelsis IC Design System Release 3

