Revision of Schur Module
S. de Graaf

Circuits and Systems Group
Faculty of Electrical Engineering,
Mathematics and Computer Science
Delft University of Technology
The Netherlands

Report EWI-ENS 11-01
March 9, 2011

Copyright© 2011 by the author.
All rights reserved.

Last revision: March 14, 2011.

Revision of Schur Module 1

1. INTRODUCTION

The space3d program uses the Schur module for 3D capacitartaation. TheSchur
module iverts a matrix of Green values where after couple capacitances between
conductor points are the result. The conductor points are laying somewhere in the
dielectrical medium and are laying close enough to each other to calculate a couple
capacitancealue. Theconductor points are called spiders, becausedtgelaying in the
center of some conductaade. Theaces are the outerside 3D conductor boundary parts.
For example a 3D conductor cube has at leastc@$. Andcan be classified as 4 siekil

faces and 1 top and 1 bottorace. Wherall spiders are in the same wingathen a
Green value is calculated for each pair of spid@tse first spider can be paired with the
five aher spiders.And the second spider be paired with four other spiders. An so on.
The resulting Greenalues can be placed in an upper matrix of order 5 (dimension 6).
See the figure belo

spl sp2 sp3 sp4 sp5 sp6

; SP1 v11 | vi2| vi3vi4 | vi5 vi6
sp5 sp3

| sp2 v22| v23| v24| v25v26
sp4 f"”é{)é ———————————— sp3 v33 | v34| v35v36
sp4 v44 | v45| va6
spS 55/ V56

sp6 dimension|= 6 b
spl. sp6 V66

order =5

Because of the symmetric case, some calculated Green values must beFequal.
example v12, v14, v23 and v34 must be equeter Schur iversion of this Greenalues
matrix the result is again an upper matrix. See the figurevbelo

spl sp2 sp3 sp4 sp5 sp6

Schur inversion result SP1 lc11 | c12| c13c14 | c15/c16
sp2 c22| c23| c24 c25c26
sp3 c33 | c34| c35¢36
sp4 c44 | ca5| c4b
Sp5 55| c56

dimension|= 6
spé c66
order=5

The diagonal values must be poadtind the off-diagonal values must begeteve. The
value c11 can be seen as a capacitance value between point spl and grouraluelhe v

The Nelsis IC Design System

Revision of Schur Module 2

cl2 can be seen as a couple capacitance value between points spl and sp2. And the c12
value is also substracted from the spl and the sp2 groundatagp Wotethat possibly

spl and sp2 are connected with the same conductor node, because the spiders are laying
on the same condcuton that case the couple capacitanedue of c12 does not\g a
capacitance element. And in that case only the ground capacitanees gpacitance
element.

window

0 order =7

2 spiders 1

2 order =9

0 spiders

2 spiders wil

4 order = 11

4 spiders

w2

2 spiders

2 spiders

4 spiders

w3

total number of spiders 16

window w1l = 8 spiders

window w2 = 10 spiders

Schur inversion:

dimension = 16
max.order = 11

window w3 = 12 spiders NOTE: 12

Especially the Schur inversion method
can handle this not fully filled matrices
and invert them. 14

In the abee figure you see a typical Schur matrix which is filled based on the spider
points which are laying in the chosen cap3d.be_windim this case there are in the y-
direction 3 eerlapping windevs. Thelast windav contains most spider points (12).
Thus the maximum order of this Schuwersion is 11. And because windo wl has
overlap with windav w3 the maximum internal mes is 16. For the memory allocation is
used the max. possible internalvs) that is 2 * max.order + 1 (dMax). In this case the
dimension is smallethus there needs only be memory for 1&30 You can calculate

the needed amount of Schur memory in bytes (dMax=16, oMax=12) as follows:

array formula amount
IN/OUT dMax* oMax * 8 + dMax * 4 1600
M/V oMax * oMax * 8 + oMax * 4 1200
Order dMax* 4 64
DIAG dMax * 8 128
P/P1 2* oMax * 8 192
Needed memory in bytes total: 3184

(a double costs 8 bytes and a pointer/integer 4 bytes)

The Nelsis IC Design System

Revision of Schur Module 3

In the Schur module revision the needed amount of memory is reduced with a factor of 2.
This was possible by combining the IN and OUT array together and also combining the
M and V array Also the use of a separate schurOut vectas nwot needed. And wo

also the Schur dimension is used in place of 2 * max.order + 1, when that is less.

window

0 order =7

2 spiders 1

0 spiders 2

2 spiders wil

4spiders | | | Nt

2 spiders 6

2 spiders 7

4 spiders w2 8 N 0 Eje’zr’ ?,7, -

i Schur inversion: N
total number of spiders 16
dimension = 16 12

window w1l = 8 spiders max.order = 7)

window w2 = 8 spiders

In the nev example abwe you see the filled Schur matrix in case the 2 windows in the y-
direction are not erlapping. Thistwo sub-matrices can completely independed be
inverted. Themaximum number of internal rows is in this case 8 (dMax). Thus, the total
needed amount of Schur memory is in this case 1872 bt that rav O can only be
executed when Order (7) next rows are readihus, after rav 7 is read-in, all rows (O -

7) can be xecuted. Andnote that a v can only be outputted, for examplem®, when

the Order of that @ next rows ae already ¥ecuted. Thusafter rav 7 is executed can

all rows (0 - 7) be outputted.

Note that when in thexample abwe the two windows have the smallest possibleverlap

of 1 raw, for example when w 7 and rov 8 overlap each otherThe order of rav 7
changes from 0 into 8, because wiwdw2 contains nav 9 spider points. Thus, W 7

can nov only be executed when ne 15 is read-in. Thisexplains wty the maximum
number of internal s is maximal equal to 2 * max.order + 1 and it igesta use that
number to allocate memoryBefore a schurlnit had a more accurate value be calculated,
but this is not done. Note that normally a second schurlnit usedirtves more Schur
memory because an wrersion of a double winde is done.

Note that only the Schur method cawean this not fully filled matrices.For the LU
decomposition method is a fully filled matrix needdahd also by a fully filled matrix is
the Schur method faster.

The Nelsis IC Design System

Revision of Schur Module 4

2. USE OF SCHUR MODULE

To use the Schur module in a program source file, you need to #include the file
"space/schurfgort.h". Thefollowing declarations can be found in this include file:

void initSchur (int maxr, int maxo);

void schurRowin (int kr, schur_t *r, int ord);

voi d schurStatistics (FILE *fp);

void printUpperMatrix (FILE *fp, int k, schur_t *r, int ord);

extern bool _t schur ShowPr ogr ess;

Now, the initSchur function has get an extra argument (maxr). This argument specifies
the maximum (or last) w number and is equal to the matrix dimension - 1. In your
program, you need to % a shurRowOut function with the following prototype:

void schurRowQut (int k, schur_t *r, int ord);

Thus, a simple Schur matrixversion program can look léthis:

int main ()

{
FILE *fp_in = fopen ("AU512", "r");
readUpperMatrix (fp_in);
i nitSchur (dinmension - 1, maxorder);
for (r = 0; r < dimension; ++r) schurRowin (r, In[r], Oder[r]);
schur Statistics (stderr);
return (0);
}
void schurRowQut (int row, schur_t *buf, int nr_cols)
{
print UpperMatrix (stdout, row, buf, nr_cols);
}

The readUpperMatrix function must allocate memory for the "In" array and "Order"
vector and must set the "dimension” and "maxordd@itie printUpperMatrix function can
print a rav in a gandard format for you and flush the output. On the end of the program
you can ask for printing of schurStatistiCEhe global "schurShowProgress" variable can
be set, if you want to see Schur progress information. This information is written by the
schurRowIn function to stderr.

Note that initSchur is needed each time you want to start a Schur maérnsian. It
allocates enough memory for the matrixdarsion and init some usedanables. Bya
second call to initSchur the old allocated memory can possibly be reuses menery

must be allocated, because there is too less allocated before. The init$cimerdr
"maxo" must be >= 0 and "maxr" must be >= "maxo". The schurRowlIn function must
supply the ravs in correct order to the Schur module (starting witkh mamber 0). The
specified order of the womust be correct and must be >="he order may not be less
than the previous order - 1.

The Nelsis IC Design System

Revision of Schur Module 5

The working of the Schur module can be explained on the hand of theifgllsource
code fragments:

voi d initSchur (int maxr, int naxo)

{

}

if (maxo > gl obal Maxo) { /* init or increase nenory */
max_used = newSchur Mem (maxr, nexo);
gl obal Maxo = maxo;
}
maxrow = mexr; nmexorder = nmaxo; schur_row = k = k2 = 0;
cal | s++;

void schurRowin (int kr, schur_t *r, int ord)

{

}

n = kr - k2;

for (j =0; j <=ord; ++) scINn][j] =r[j];
scOrder[n] = ord;

scDIAGn] =11/ sqgrt (r[0]);

while (kr - k >= scOrder[k - k2]) {
execSchurRow (); /* execute schur for row k */
if (++k > kr) break;

}
if (kr == maxrow) { /* last row */
if (kr >= k) say ("Ho, not all rows conputed"), die ();
schur_row = -1;
}
while (k - k2 > scOrder[0]) { /* conpute the entries of row k2 */
i nSave = scINO0];
for (j =0; j <=scOder[0]; ++) {
val = 0;
for (n =j; n <= scOder[0]; ++n)
val += scIN n][nmaxorder - n] * scIN n][maxorder - n + j];
inSave[j] = val;
}
schur RowQut (k2, inSave, scOrder[0]);
if (++k2 == k) break;
for (n =0; n<=kr - k2; ++n) { /* push nenory */
scINn] = scIN[n+tl]; scD An] = scDl AG n+1];
scOrder[n] = scOrder[n+l];
}
scIN[n] = inSave;
}

You se that schurRowin calls schurRowOut when "k - k2 > scOrder[Bpsition
scOrder[0] is the order of wok2, which may only be outputted whemnwr& is executed.
The memory of scIN, scDIB and scOrder is each time shifted after schuvRkat. This
is done because schurRowlIn wants to reuse the memory of the ready ro

The Nelsis IC Design System

Revision of Schur Module 6

You can also see that "ing& is st to "scIN[0]" and that "inSe" is used as the output
buffer. Thus, no separate output buffer needs to be allocated.

After execSchurRw the test for "k > kr" is added, because when this happens the test
against scOrder[] must not be done, because scOrder[] is not yeBgeh. test is also
added after schurRowOut, because k2 caerriee geater than k.

Note that also a test for the lasiwrs added to the code. When the lasivris read-in all

rows must be xecuted. Andonly when all rows arexecuted then the ms can all be
outputted.

What is more changed? FunctioxeeSchurRev is changed to makthe code faster (>

10% speed-up)Also the arrays scV and scM could be combined together becayse the
are a lower and an upper triangular matiatrix scOUT is also combined with scIN,

this is possible because scIN is copied to the scV matrix after calculations. Note that all
global used matrices)& get a leading "sc" prefix.

All the "schur.xxx" parameters are wmambsolete. Thesetting of these parameterasv
once tested in function initSchuihe use of these parameter settings is only useful for
the Schur module test program. Thus is it not useful to try to use the LU maérisiom
method. Becausk has knevn limitations and it is much sier. For the test program, i
had to mak dhanges to let the LU methodovking agin. | added the TEST_SCHUR
compile define, thus that the LU code and other test code in sehri&oonly added to
the test program. Also library file "schur.a" does not contain the LU functigmsoaa.
Code fragment of schurRowIn:

#i f def TEST_SCHUR
if (luFact) {

if (kr == maxorder) { /* conplete matrix is known */

LU (maxorder + 1); /* perform LU deconposition */

}

return;

}
#endi f

The memory counting facility for the schurStatistics function véseel. Nav the eact
number of used bytes is calculated by the$ehurMem function. In the old situation
you was not getting the correct information. Note that this function has also get the
maxrov argument and if needed shall use maxrim place of 2 * maxorderwhen
smaller Also the test program has get avraption to print the statistics.

Note that the allocated memory is not more "random" initialized to 999. This is
completely unneeded, we must only be careful not to use or test unset elements (lik
"scOrder" mentioned before). All the allocated memory is freed before ne memory

is allocated. This makes it possible to reuse a part of the freed memory.

Note that the LU method is not realy using scPIV at this momé&natsave memory
scOrder is used for the scPIV vector and the scV matrix is replaced by the scIN matrix.

The Nelsis IC Design System

Revision of Schur Module 7

3. THE SCHUR MODULE TEST PROGRAM

The Schur module test program canwvnbe @mpiled for @ery configuration. The
CMAKE file is changed (also the TEST_SCHUR compile_defines is added).
To compile, give the following command:

% cnmake -v testschur

The made program is called "schur" and is copied to the configuration "bin" directory.
To request help ge smply the following command:

% schur
Usage: schur [options] infile [order]

argunents:
infile: A positive definite (partly specified) input matrix.
Default, the input matrix is specified such that the upper
triangul ar part of each (partly specified) row starts on a
new | i ne. Exanple:
all al2 al3
a22 a23 a24
a33 a34
ad4a
order: An optional bandwi dth (order=0 neans only the nmain di agonal
order=1 nmeans mai n di agonal + first upper and | ower diagonal).

options are:
-t: The inputfile is of a formlike
4
all al2 al3 al4
a2l a22 a23 a24
a3l a32 a33 a34
a4l a42 a43 ad4
-b: The band of the matrix is specified as a vector in a file
called "infile.b’, where infile is the first program argunent.
-1: Perform LU deconposition to invert the matrix; in this
case the input matrix nust be a full matrix.
-s: Print statistics about matrix inversion.
-d: Print debug information (not for option -1, use this
option twice to get also a 'result’ file).
-f: Print full matrix (in case of not -t).
-u: Print upper triangular part (in case of -t).

The program produces an output matrix that has a simlar formas
the input matrix.

New are the options -s, -f and -u. The -h option is obsolete and theydgdiion -d has
been changed.
For example, use the following input file and see what thergion result is:

The Nelsis IC Design System

Revision of Schur Module

% cat AU
5111
511
51

5

Schur matrix imersion result for the "AU" file:
% schur -s AU

schur: dinension found = 4
schur: max order found = 3
schur: using nmax order = 3

2.187500e- 01 -3.125000e-02 -3.125000e-02 -3.125000e-02
2.187500e-01 -3.125000e-02 -3.125000e-02

2.187500e-01 -3.125000e- 02

2.187500e- 01

SCHUR TI ME 0.00 s

schur Stati stics:
schur calls
max. di nensi on
max. nexorder
max. int. rows :
max. matrix nmenory : 400

A wWwbhPE

New is dso the SCHUR TIME information (user time) which iseji.
Matrix inversion result for the LU method:

% schur -1 AU

schur: dinension found = 4
schur: max order found = 3
schur: using max order = 3

USI NG LU DECOVPCSI Tl ON

2.187500e- 01 -3.125000e-02 -3.125000e-02 -3.125000e-02
2.187500e-01 -3.125000e-02 -3.125000e-02

2.187500e-01 -3.125000e- 02

2.187500e- 01

Schur matrix imersion result using only the O-th order:
% schur AU O

schur: dinension found = 4
schur: max order found = 3
schur: using max order = 0

2. 000000e- 01
2. 000000e- 01
2. 000000e- 01
2. 000000e- 01

The Nelsis IC Design System

Revision of Schur Module

The inversion results of a full matrix with dimension 528:

% schur -s AU528 > z1
schur: dinmension found = 528
schur: max order found = 527
schur: using max order = 527
SCHUR TIME 0.34 s
schur Statistics:
schur calls 1
max. di nension 528
max. naxorder 527
max. int. rows . 528
max. matrix menory : 4479552
% schur -sl AU528 > z2
schur: dinmension found = 528
schur: max order found = 527
schur: using max order = 527
USI NG LU DECOWPCSI TI ON
SCHUR TIME 0.72 s
schur Stati stics:
LU calls 1
max. di nension 528
max. naxor der 527
max. int. rows . 528
max. matrix nmenory : 4466880
%diff z1 z2
%we z1 z2
528 139656 1954632 z1
528 139656 1954632 z2
1056 279312 3909264 t ot al

The results for the old test program are:
% schur_old -s AU528 > z1

SCHUR TIME 0.41 s

max. matrix menory : 13436580
% schur_old -sl AU528 > z2
SCHUR TIME 0.72 s

max. matrix nmenory : 8952784

You can see that the weSchur module is more than 17% faster.
And that significant less memory is used by the medule.
And that too much memory is allocated for Schur by the old module.

The Nelsis IC Design System

Revision of Schur Module 10

4, TWO MORE SIGNIFICANT SCHUR TEST EXAMPLES
% schur_old -s AU1231 > z1

SCHUR TI ME 41.62 s

schurStatistics:

schur calls 1

max. di nension . 6303
max. naxorder . 1231
max. int. rows . 2298

max. matrix menory : 72983716
% schur -s AU1231 > z2
SCHUR TI ME 36.40 s

max matrix nenory : 36481968

%fpdiff2 z1 z2 | & we -|
613

You can see that the neSchur module is more than 12.5%sfer The floating point dif
program found 613 printed numbers which were not 100% edpahost cases is only

the least significant digit one less or moigote that the small output difference can
come from thedct that directly the answer 1.0 is used for the diagonal value in place of
the multiplication of (1 / sqrt(d)) * (1 / sqrt(d)) * d.

% schur_old -s AU2238 > z1
SCHUR TI ME 313.32 s

schur Statistics:

schur calls 1
max. di mensi on : 11226
max. naxor der . 2238
max. int. rows . 4251

max. matrix menory : 240862700
% schur -s AU2238 > z2
SCHUR TI ME 270.65 s

max. matrix menory : 120413404

You can see that the weSchur module is more than 13.5%ster Also the memory
usage is in the meSchur module less than 50%.

In the last gample is also too much memory allocated, because max.int. rows is smaller
than 2*maxorder + 1. The difference is 226 rows.

And that gves a btal wast of dMax_dif* (16 + oMax * 8) = 4,051,728 bytes.

The Nelsis IC Design System

Revision of Schur Module 11

5. TWO SIGNIFICANT SPACE3D TEST RUNS

When setting parameter "print_time", you get more detailed timing information of some
space procedures. Only the most important procedures are listagl bi&locedure
computeCapacitance is almost equal to thexal" time information gien. Procedure
computeCapacitance is the sum of procedures green and schurRowln and some small
overhead. Thename schurRowin is a little bit misleading, because also sciM@RD
belongs to it.Note that these values aremwngprinted with two digits behind the floating

point, just to be more secure. (This revision was made in "space/auxil/clock.c".)

% space3d_ol d - FC3v pi xel _ext -Scap3d. be_w ndow=1.0 -Scap3d. max_be_area=0.1

procedure r eal user sys

conput eCapaci t ance 6:38.70 6: 28. 25 10.16 99. 9%
green 3:02.08 2:56. 99 4.57 99.7%
schur Row n 3:27.00 3:26. 44 0.11 99.8%

overall resource utilization:
menory allocation : 62.992 Myte

user tine : 6:28.5

systemtine : 10. 2

real tine : 6:39.0 99.9%
% space3d - FC3v pixel _ext -Scap3d. be_w ndow=1.0 -Scap3d. max_be_area=0.1
procedure r eal user Sys
conput eCapaci t ance 6: 02. 57 5:52.35 10.02 99. 9%
green 3:02. 49 2:57.12 5.11 99.9%
schur Row n 2:50. 13 2:50.21 0.18 100%

nmenory allocation : 37.360 Myte

| don't give the "overall” time information agmore, see procedure computeCapacitance.
The overall speed impreement is more than 36 seconds (is more than 9hjs because
of the speed impr@ment in the Schur module of circa 17.8%.

% space3d_ol d - FC3v pi xel _ext -Scap3d. be_w ndow=0.5 -Scap3d. max_be_area=0.1

procedur e r eal user sys

comput eCapaci t ance 1:54. 06 1:50.71 3.27 99. 9%
green 1: 29. 47 1: 28. 09 1.71 100%
schur Rowi n 21.43 21.11 0.04 98.7%

menory allocation : 18.293 Myte
% space3d - FC3v pixel _ext -Scap3d. be_w ndow=0.5 -Scap3d. max_be_area=0.1

procedure r eal user Sys

conput eCapaci t ance 1:48. 16 1:44.74 3.38 100. 0%
green 1:28. 63 1:27.13 1.59 100%
schur Row n 16. 07 15. 96 0.02 99.4%

menory allocation : 12.837 Myte

The overall speed impreement is more than 5.8 seconds (is more than 5Wis
because of the speed impement in the Schur module of circa 25%.

The Nelsis IC Design System

Revision of Schur Module 12

6. THE EVOLUTION OF FUNCTION EXECSCHURROW

The old code of functionxecSchurRe is gven below. But the names of the arraysviea
been changedvariable "koffset" is changed into "k2".

kk = k - k2; /* execute row k for scl N kk] */

if (k == 0) scOQUT[kk] [maxorder] = scDl A4 kk];
el se {
max_i = 0;
if (kk > 0)
for (j =0; j <=scOder[kk]; j++) { /* A */
e = scINKK][j];
scV[j][1l] = scINkk - 1][j + 1];
if (j ==0) {
for (i =1; i <= kk & i <= scOder[kk - i]; i++) { /* A0 */
scP[i] = scV[j][i] ! e;
scPl[i] =1/ sqrt (1 - scP[i] * scP[i]);
e =sgrt (e * e - scV[j][i] * scV[j][i]);

}
max_i =i - 1;
}
el se {
for (i =1; i <= kk & i <= scOder[kk - i] - j; i++) { /* AL */
scV[j - 1][i + 1] = (scV[j][i] - scP[i] * e) * scPl[i];
e = (e - scP[i] * scV[j][i]) * scPi[i];
}
}
}
for (j = maxorder + 1 - max_i; j <= maxorder + 1; j++) { /* B */
L = (j == maxorder + 1)? 1 : O;
for (i = Max (1, maxorder + 1 - j);, i <= max_i; ++i) { /* Bl */
if (i ==1) {
if (j == maxorder) scMj][i] = 1;
else if (j == maxorder + 1) scMj][i] = O;
}
else if (j == maxorder + 1) scMj][i] = O;
scMj - 1][i + 1] = (scMj][i] - scP[i] * L) * scPl[i];
L =(L - scP[i] * scMj][i]) * scPl[i];
}
scQUT[kk][j - 1] =L * scDDAGkk + j - nmaxorder - 1];
}

}

You can see that for-loop A is only done when "kk > 0" is true. In that case becomes
max_i > 0, because fdoop AO is alvays done onces and i is incremented. This is true,
because scOrder[kk-1] isvedys >= 1. For-loop B is alvays done. It contains a number

of if-statements i dom’like in the loops (thus i hee rewritten that part).When max_i =

0, j = maxorder+1, L = l1.For-loop Bl is not done, because i <= 0 is not true.
scOUT[KkK][j-1] is set to scDI&[kk]. Thus,the code can be changed into:

The Nelsis IC Design System

Revision of Schur Module 13

if (kk > 0) {
e = scINKK][O]; /* note that this value is always 1 */
scV[0][1] = scINkk - 1][1];
for (i =1; i <= kk & i <= scOder[kk - i]; i++) { ... } /* A0 */
max_i =i - 1;
for (j =1; j <= scOder[kk]; j++) { /* A */
e = scINKK][jI1;
scV[j][1] = scINkk - 1][j + 1];

for (i =1; i <= kk & i <= scOder[kk - i] - j; i++) { ... } [I* AL */
}
for (j = maxorder + 1 - max_i; j <= maxorder + 1; j++) { ... } /* B */
}
el se {
scQUT[kk] [maxorder] = scDl A4 kk];
}
Because for-loop AO iswabys done onces. The first code part can be rewritten, like:
if (kk > 0) {
scP[1] =L =scV[0][1] = scINkk - 1][1];
e =sqrt (1 - L * L);
scP1[1] =1/ e;
for (i =2; i <= kk & i <= scOder[kk - i]; i++) { ... } /* A0 */
max_i =i - 1;
}

Note that column O of scV is not used and that column 1 of scV must containviceipre
scIN (scIN[kk-1]). When we look to the second code part with for-loop A, we see that
scV[j][1] is filled with scIN[Kk-1][j+1].
When we dort’'want to used scIN[kk-1] anymore, we can possible use scV[][1] instead.
And, because scV[j-1][1] is not used in A1, we can write:
for (j =1; j <=scOder[kk]; j++) { /* A*/
scV[j - 1][1] = e = scINKK][j]I;
for (i =1; i <= kk & i <= scOder[kk - i] - j; i++) { ... } /I* AL */
}

Note that also for kk == 0 scV[j-1][1] must be filled with scIN[kK][j] (for j >= 1)ote
that, because scIN is first written to seX¢ @an reuse scIN[kk] for scOUTI[kK].
For the inner for-loop Al, for i=1, must scOrder[kk-1] be >And because walays
scOrder[kk] >= scOrder[kk-1] - 1, we can also write:
for (j =1; j <scOder[kk - 1]; j++) { /* A*/
scV[j - 1][1] = e = scINKK][j]I;
i = 1;
do{ ... } while (++i <= kk & i <= scOder[kk - i] - j); /* AL */

}
for (; j <= scOder[kk]; j++) scV[j - 1][1] = scINkK][j];

And if we like, we can shift all scV columns one column to the left (thisssaemory).
The same can be done with scM and i found out that scV can be combined with scM.

The Nelsis IC Design System

Revision of Schur Module 14

Example of gecSchurRev for an input matrix of dimension=4 and maxorder=3:

Normalization al=zal*sl*sl=1
of scIN: a2=a2*sl*s2
a3=a3*sl*s3
a4 =a4*sl*s4
s2 | =1/sqrt(bl) bl=bl*s2*s2=1
b2 =b2 *s2 *s3

=1/sqrt(cl
an(e) b3 =b3*s2*s4

scIN scDIAG

row
k=0|al|a2| a3 a4 0| s1|=1/sqgrt(al)

1| b1|b2] b3 1

21 cl|c2 2
kr=3 | dl 3

s4 | =1/sqgrt(dl) cl=cl*s3*s3=1
c2=c2*s3*s4
dl=dl*s4*s4=1

After 4 input rows is kr=3 and is ¥« >= scOrder[0] and is v 0 executed. Butbefore
the raw is executed, it is first normalized. The figure aleajves a £hematic gerview of
this normalization step for all ws. You see, that the firstalue "al" (the diagonal)
becomes 1.You e, that the normalization ofwd) is anly possible when inOrder xe
rows are read-in, because the diagonal values in $8[&ié& used for normalization.
After row 0O is executed, you see what happens in the figure below:

scv 0 1 2 3 execSchurRow() kk = k = 0; scOUT
0)a2 m-3 k2 = 0; s1 o
1) a3 m-2 m = maxorder = 3 1
2| a4 m-1 2
3 3

m-3 m-2 m-1 m

Because kk=0 (k=0) only the input is stored in column 0 of scV and the first oatpat v
scOUT[m][kK] is equal to scDIAG[kK] (= s1). Rol is executed in the figure below:

execSchurRow() kk =k =1; (pl=scP[1] and gl =scP1[1])

sev.0 1 2 3 pl=a2; ql=1/sqrt(l - pl*pl) ScouT
0|b2 v m-3 vl=(a3-pl*b2)*ql st |0
1| p3|v2 m-2 v2=(ad-pl*h3)*ql s1*1|s2*12| 1
2| a4|mi m-1 ml=ql, 11=-pl*ql 2
3 m2 m m2=11; I2=ql s
scM m-3 m-2 m-1 m

First p1 and q1 are calculated and thenva cdumn (1) for scV is calculated\ote that

the values of column 0 are used before thre overwritten with b2 and b3. Alsoalues

for column 1 of scM are calculatedNote that the values v1, v2, m1 and m2 are used in
the exec of the next rav. The values |1 and 12 are used to seb tmew vdues in
ScOUT(KK].

The Nelsis IC Design System

Revision of Schur Module 15

The figure belw gives a £hematic werview of the eec of row 2

execSchurRow() kk = k = 2; pl="b2; gl=1/sqrt(1 - pl*pl)
p2 =v1*ql; q2=1/sqrt(1 - p2*p2)
sV 0 1 2 3 vli=(b3-pl*c2)*ql scOUT
= — * *

0l lvi|va m-3 w=(c2-pl*b3)*ql <1 o
v3=(v2-p2*w)*q2

1| p3|v2 | m3 m-2 s1¥1|s242| 1
m3=ml*qg2; 1I3=-p2*ml*qg2

2| a4 |ml| m4 m-1 ml=ql s1*13 | s2*14|s3*I5| 2

3 m2| m5 m m4 = (m2 +pl*p2*ql)*q2 3
14 =(-pl*ql-p2*m2)*q2

scM m2 = —p1 * gl m-3 m-2 m-1 m

m5=-p2*I5; I5=ql*q2

The figure belw gives a £hematic werview of the eec of row 3

execSchurRow() kk = k = 3; pl=c2; gql=1/sqrt(l - pl*pl)
p2 =v1*ql; g2 =1/sqrt(1l - p2*p2)
w0 1 2 3 p3 =v3/sqrt(l - p1l*pl — v1*vl) ScOUT
g3 =1/sqrt(1 - p3*p3)
0/c2|vl |Vv3 |m6|m-3 sl |0
mé=..; 16 =-p3*m3*q3

1|p3|v2 | m3|m7|m-2 m3=..m7=.. s1*1|s2*12| 1

I7=(-p2*ml*qg2-p3*m4)*qg3

s1*13 |s2*14|s3*5| 2

ml=..,m4=.,m8=..;
3 m2| m5| m9 |y, I8a = (-pl*ql - p2*m2) * q2 s1*16|s2*17 | s3*I18|s4*19| 3
I8 = (I8a — p3 *m5) * g3 m-3 m-2 m-1 m

scM m2, m5, m9=.;19=ql*qg2*q3

Note that the ne calculated m1 to m9 values are not more used. But the calculation can
not easy be skipped, because the values 16 to 19 must be calculated for setting scOUTI[kk].
Now schurRavOut can be done forw0 (and the other rows), because scOrder rows are
executed after revy O and all needed result values ak@ikable to be used.

The figure belw gives a £hematic gerview of how the output hffer needs to be filled

for row 0 and row 1:

scOUT Output buffer for row 0:

s1 |0 rowOut[0] = s1*s1 + s1*1*s1*|1 + s1*I3*s1*I3 + s1*16*s1*I6

s1*1|s2*12| 1 rowOut[1] = s1*|1*s2*12 + s1*I3*s2*14 + s1*|6*s2*|7

s1*13 | s2*14 |s3*I5| 2 rowOut[2] = s1*13*s3*|5 + s1*I6*s3*I8

s1#16|s2*17 | s3*18|s4*19| 3 rowOut[3] = s1*16*s4*19

m-3 m-2 m-1 m Output buffer for row 1:
rowOut[0] = s2*12*s2*12 + s2*14*s2*|4 + S2*|7*s2*|7
rowOut[1] = s2*14*s3*I5 + s2*17*s3*18

rowOut[2] = s2*17*s4*19

The Nelsis IC Design System

Revision of Schur Module

16

The Nelsis IC Design System

