An Hierarchical and Technology Independent Design Rule Checker

T. G. R van Leuken
J. Liedorp

Circuits and Systems Group
Department of Electrical Engineering
Delft University of Technology
The Netherlands

Abstract

This paper describes a uniform andwnepproach to a technology
independent and hierarchical artwork verification method. It is based upon
the 'augmented instance’ of a cell and the stateruler scan algor8gm.
making an hierarchical instance of a cell, the cell is made independent of
other cells. The artwork erification programs based upon theotw
mentioned concepts exploit the hierarcdnd repetition present in the
layout description of an inggeated circuit. That way the run time and
memory requirements are no longer a function of the number of layout
primitives in the fully instanced integrated circuittbonly of the number

of primitives defined in the original hierarchical layout descriptidn.the
method of artwork &rification described in this paper the design rules that
can be tested upon are based upon the presence of combinations of masks.
All combinations of masks can be tested with respect to each sthbe
programs for the verification of the advk are largely technology
independent. Asiddrom handling the erification in an hierarchical
manneyr the main problem addressed by the method is tlieiegit
handling of the lage class of possible design ruleg/e cescribe the
concepts and their implementation. The results are illustrated by some
examples. Thdechniques presentedveabeen implemented for paraxial
geometrics. Theaso are usable in the general context.

Copyright© 1988-2003 by the authors.
All rights reserved.

Date: Octoberl986
Last revision: May2003.

An Hierarchical DRC 1

1. Introduction

The growing complexity of the artwork of integrated circuits necessitates the use of
structured design method#\n important issue in this respect is the possibility to use
hierarcly in the description of an ingeated circuit, i.e. a cell in a description may call
another cell etc. In most artwork description languages this concept of hyerarch
present. Br eficiengy reasons it is very desirable that programs that advied with

the design and verification of an integrated circuit can exploit this higrarthe
following demands are made on our system:

a. Thefreedom of the designerimethodology should in no ay be impaired by the
tools (for that reason we will not use the notion ’hierarchical protection frame’).

b. Minimal comple&ity both in the scanning and in the handling of the multitude of
design rules must be acheel.

c. Thehierarcly must be exploited as much as possible.

In this paper we will she a method for artwork verification that optimallx@oits this.
We will describe the underlaying principles and describe the wayaieeused to form an
efficient way for artwork verification.

In section 2 we will define the 'augmented instance’ of a ¢eltdoing so we will be able

to see an hierarchical cell description as the composition of a number of independent
augmented cell instances.

The augmented instances are made independent by requiring that cells are interconnected
by means ofterminals’. W will define a terminal as an area in a cell on a certain mask
where primitves of aher cells, defined in the same mask, magrlap. A difference
between our approach and that ofwe# and Fitzpatric [1] is that our approach
preserves the cell hierarch its original form.

In section 3 we will discuss the cmnsion of the augmented instances to lingnsents.

The algorithm for doing so will be based upon the stateruler scan algorithis.
algorithm also forms the basis for the artwork verification programs discussed ixthe ne
sections.

In section 4 we will discuss the artwork verification programs, using the line segments as
input.

In section 5 some results of tests with the programs mentioned wiNdye dt turns out
that the algorithm indeed is linear with respect to the number of esnith the cell
under test, as was already stated in [2].

Section 6 at last will ge me conclusions.

The Nelsis IC Design System

An Hierarchical DRC 2

2. Augmented Instancing of a cell

The layout description of an igeted circuit is usuallyvailable as an hierargtof cells,

in which each cell is made up of primés (rectangles, wires etc.) and references to other
cells. Thebasic problem we meet when we try tleit the hierarci is the influence

the cells can hee an each other Consider for instance the cellvgn in figure 2.1. To
interconnect the cells m2 and m3, referenced in cell m1, among themselves as well as
with the primitives defined in cell m1, primities of dfferent cells hae © overlap.

Cellml
Cell m2

Cell m3

Figure 21. Cell interconnection

These primities necessarily cross an imaginary boundary that can be drawn at some
distance around the cell to protect its contents from disturbances from the otits&de.
problem nav is that the analysis of twinstances of the same cell can be quitkint.

For instance in the case of artwork checking, the interfringing pvesitray create ng

errors oy corversely remee erors that were previously present. Alsawvand unwanted
elements may be generated wertapping primitives ariginating from different cells.

The solution we proposeas deeloped with existing design practice in mind. It limits
the designer in some ways, butvesa hm free as much as possible. The restrictions
imposed on an individual cell design are:

The Nelsis IC Design System

An Hierarchical DRC 3

1. Thereferenced cells should be free of design rule errors.

2. Theimplied circuit of the cells referenced may not be changed as a result of
interfringing primitives.

To make aconsistent design system we willvieato insure that these restrictions are
obeyed. Thefirst restriction is obeyed almost automatical3iven a cesign rule cheak

it suffices to check the cells in the cell hiergrechdividually The second one is more
difficult. By checking the places where primés of dfferent cells hee an overlap, and
signaling if thg do 9, the violations of the second rule can be diewa too. This

check is carried out in the program nbool(see section 4). In the sequel we shall assume
that the mask data isvgn in the form of an ordered line segment file, one per mask, with
extra masks for the intercell terminals (see further). Such files can be obtained by the
same type of algorithm as for the design rule cheskersection 3.

To handle the hierarchical design rule chekve define the 'augmented cell instance’

of a cell. It contains the information necessary for the checking of the design rules, of the
cells independently from its subcellg.can also handle the extraction of the circuit from
the artvork. (seethe paper on extract on thislume). Crucialin the definition of the
augmented cell instance is the concept of vactegon’. The active regons of a cell
surround the places where the implied circuits of the referenced cells can be changed, or
the design rules might be violatellVe asssociate an as# regon with each primitre
defined in the cell, as well as with eachertap of cell frames.A cell frame is an
orthogonal rectangle that surrounds a cell as close as possible. Tvee ragtins
associated with the primits of a @Il are determined by growing the dimensions of the
primitives with a constant, but mask dependent paraméher 'expand_ofset’. The

active regons associated with thevelapping cell frames are determined by growing the
dimensions of the werlap region with the maximum of the xpand_ ofsets just
mentioned. Furthermoree define a 'checktype’ to distinguish prinaés ariginating

from different cells. The checktype 'O’ is associated with prirestidefined in the top

level cell, all other primitves get a positie integer as checktype.

The program which determines the 'augmented instances’ of cells is the program mkbox.
This program reads from the database the data of the pasnit the cells ivolved and

the files determining their hierarghFrom this data it makes (for each cell desired) a file
consisting of all the rectangles of the antiw forming the 'augmented instance’ of that
cell. Thisfile also contains the following primis:

« All rectangles of the top Vel cell. Thoserectangles hae a hecktype zero

» All rectangles of sub_cells and sub_sub_cells etc.(ra@ykithat hare an overlap
with one of the acte regons of the rectangles of the topvék cell. As their
checktype these rectanglesvbaa msitive integer characteristic for the cell the
originate from.

The Nelsis IC Design System

An Hierarchical DRC 4

« All rectangles of sub_cells that Ve a overlap with the actie regons associated
with the overlap of sub_cells As their checktype these rectangles alseehamsitive
integer indicating which cell tlyeoriginate from.

The Nelsis IC Design System

An Hierarchical DRC 5

3. Line Segment Conersion, the Stateruler

The cowersion of the orthogonal rectangles to line segments is done based on the
stateruler scan algorithm wgn in figure 3.1. The algorithm is applicable in mgan
situations where the arbosk data is used as input. E.g. it can equally be used for (layout
to circuit) etraction, design rule checking and the generation ofveterjeometries
(polygons, groups, pattern generation). The complexity of the algorithm is linear in the
number of edges in the layout. The method is best illustrated with the sixaphple of
rectangle to vertical line segment gersion.

begin

initialize stateruler
event _status : = sel ect_event(event, event_pos);
staterul er_pos := event_pos;
whi | e(event _status is not N L)
| oop
repeat [rmake a stateruler profile]
i nsert_event (event, staterul er_pos);
event _status := sel ect_event(event, event_pos);
until (event_status is NIL or staterul er_pos < event_pos);
whil e(staterul er_pos < event_pos) [anal yze staterul er]

staterul er_pos := analyze_staterul er(staterul er_pos);
staterul er_pos : = event_pos;
end | oop
whi | e(staterul er_pos < MAX_ I NTEGER) [nmake final analysis]
staterul er_pos := analyze_staterul er(staterul er_pos);

end

Figure 31. Stateruler Scan Algorithm

A stateruler contains aevtical cross section of the layout description as a sorted list of
fields. Thestateruler is made by scanning the layout from left to the rigath field has

its own state, determined by a number afiables. Whatstate variables are used
depends on the application the algorithm is applied to (e.g. design rule verification or
circuit extraction). For rectangle to line segment s@rsion the state is determined by
the duration, thewerlap duration and the checktype. The duratioregihe x_value for
which the field will cease toxest. Likewise the @erlap duration gies the x_value for
which the @erlap of rectangles in the field will cease tase If there is no werlap this
variable is undefinedThe checktype of a stateruler field depends on the checktype of the
rectangles forming the field.

The algorithm proceeds by making and analyzing what we call stateruler prdfiles.
stateruler profile is made by repeatedly selectingvantend inserting thatvent in the
stateruler The selection of vents is based upon a selection criterion. In the case of
rectangle to line segment a@nsion the gents are the rectangles. The selection criterion
is the smallest left value of the rectangle and & tectangles hae the same left alue,

The Nelsis IC Design System

An Hierarchical DRC 6

the smallest bottomalue. Theprocedure Select_gent’ returns the eent_status. The
event_status will be 'NILif t here are no morevents to select.

The insertion of anvent is done by comparing the bottom and the talpes of the eent
with the bottom and topalues of the fields in the staterylepdating the state of the
existing fields and creating wnefields if necessaryIn the case of rectangle to line
sement comersion the state update is done according to a number of rulesddigam
the way we want to represent a polygon by vertical lingreents. Considdigure 3.2a.
The rectangles depicted in this figure must beveded to the line sgments gren in
figure 3.2b.

CT1 CT3 1 1

CT2 ‘ [1

(@) (b)

Figure 32. Polygon and line segment representation

We dstinguish seeral types of line sgments, characterized by the occurrence type.
They are:

« START: A start segment will hae the interior of the polygon located to the right of it.
« STOP: A stop segment will faa the interior of the polygon located to the left of it.

« CHANGE: A change segment indicates a change of checktype. The polygon area to
the right will have the checktype of the CHANGE segment.

+ START_OV: A start_os segment indicates the start of anedap of two areas. The
overlap is situated to the right of the segment.

+ STOP_(: A stop_or segment indicates the cease of arentap. Theoverlap will be
situated to the left of this segment.

Also combinations of the types mentioned\aoray occuy so eg. an segment that ias
well START as GHANGE etc.

Wheneer two o more rectangles with different checktypes start verlap we will
generate a CHANGE gment. Thechecktype of such a gment will be made zeroAt
the end of the \@rlap another CHANGE segment is generated, restoring the checktype.

The Nelsis IC Design System

An Hierarchical DRC 7

In doing so we can assure that theserlap areas are checked because all areas with
checktype zero will be fully checked. (see section 5).

Whenever a gateruler has been built the routine 'analyze_stateruler’ is called. In the case
of rectangle to line segment a@msion this routine generates the line segments based
upon the state information present in the individual fields. The generated segments are
characterized by six parameters:

« X_value: The x_value of the segment.

« occurrence: the occurrence type as describedeabo
+ y_bottom: The y_bottom value of the segment.

« y _top: The y_top value of the segment.

+ connection_type: This variable indicates if thgreent has connections to the upper
or the lower side or both.

« group_nbr: This variable is an integer indicating what polygon thmeet belongs
to.

» checktype: This variable indicates the cell the edge belongs to.

The procedure ’analyze_stateruler’ returns the next position for which the stateruler
should be analyzed am. Itreturns MAX_INTEGER if that is not necessary.

The final result will be a set of linegment files which together represent the instanced
cell. Thesefiles form the basis for subsequent analysis, as discussed in the oext tw
sections.

The program performing this cegrsion is the program maidn.

The Nelsis IC Design System

An Hierarchical DRC 8

4. DesignRule Checking

Design rule checking is needed to see if all rules concerning the dimensions otggimiti
of a designed integrated circuit gbthe rules imposed upon it by the technology the
integrated circuit has to be made in. The checks maghie gap or width checks on a
combination of masks present or a gap warlap check between twoombinations of
masks presentEvery technology has itsnm set of design rules that has to beyele

To make the design rule cheek as much independent of a special process as possible, it
is based upon combinations of masks one may specify for a certain technology.
Generally we may split the problem of design rule checking inbgobsts:

+ A part that for a certain rule selects the itenvlved.
+ A part that does the actual checking upon these items.
For a hierarchical design rule checker the first again may be splitarpawis:

+ A part that picks from the total amount of data of the artwork of the integrated circuit
the minimum part that is needed for the checking of a certain part of theTbedl.
part has been described in the previous sections.

» A part that selects the data needed for a check of a certain design rule from this data
gahered.

This second part is carried out by the progmbool, which performs all and, or and
negae operations needed to select mask combinations needed for therchiedées so
in one pass, with a linear complexity.

As stated the checks to be performed are widdip, g@ndoverlap checks. The width
check alvays concerns one (combination)mask and gap checks may concern ome or tw
(combination)masks. @wlap checks walays concerns to (combination)masks.
Therefore the checker itself is also divided into parts:

1. Apart that does width and gap checks concerning one (combination)mask.

2. Apart that doeswerlap checks and gap checks concerning
two (combination)masks.

So the design rule check is done in three steps:

1. Firstall the combination masks needed in the check are made by the program
nbool. The files that hae © be nade must be gen in a fie booldata, the format of
which is gven in gopendix A.

2. Thenthe checks concerning one (combination)mask are carried out by the program
dimcheck. The checks that ke © be a@rried out must be gen in a fie
dimcheckdata2, the format of which is alsoggn in gppendix A.

3. At last the checks concerning aw(combination)masks are carried out by the
programdubcheck. The checks that kra © be @rried out must be gén in a fie

The Nelsis IC Design System

An Hierarchical DRC 9

dubcheckdata, the format of which is alsoggn in gopendix A.
Two design rule checkers are in use at the moment:

1. Asimple checkr autocheck which only checks for width and gap errors per mask;
so errors stemming from combinations of masks will not be lookedAfatocheck
is implemented as a shell_script, which calls the progliamoheck with the correct
options.
How autocheck is called and what options are possible ¥@gin gppendix E.

2. Thecheck prograndimcheck, which preforms all the design rule checks, so checks
in the same mask as well as checks between (combinations of) masks.
Dimcheck is also implemented as a shell_script. It first calls the progoaah
which determines the vin_files of the combination_masks needed for the checks.
After that the programdimcheck anddubcheck are called, which use these files to
perform the checks, together with the cell_data of the cell(s) to test and the
technology filesdimcheckdata? and dubcheckdata Dimcheck thereby checks for
width and gap errors in the same (combination)maskdabcheck checks for gp
and werlap errors between twdfferent (combination)masks.
Schematically this is shown in the next figure:

cell_data booldata
'

nbool L . hierarchical errors

bool*_vin dimcheckdata2

i

dimcheck — = gap & width errors

dubcheckdata
'
dubcheck — & gap & overlap errors

Figure 41. The checker dimcheck

How dimcheck is called and what options are possible v@gin gopendix E.

A short description of programs mentioned will beegiin the next sub_sections.

The Nelsis IC Design System

An Hierarchical DRC 10

4.1 Theprogram nbool

Nbool is a program to generate logical combination masks, which are a combination of
input masks in vertical line segment format (vin format).

As input it uses a file with the description of the logical formulas of the masks to be
made. Br a description of this file see appendix A. Also the vin files mentioned in these
formulas and a file with the name of the cell(s) of which the file® fabe nade is
needed. ltuses the stateruler algorithm in a similaaywas described in section 3.
Globally the program works as follows:

read "logical’ file and set up an internal |ogical structure.

for each cell do {

while not all segnents inserted {
read segnents and sel ect segnent to insert.

if (x_segnent != stateruler position) {
check stateruler for hierarchical errors of
the cell.

determne using the internal |ogical structure
and the | ayers present in the stateruler
fields what new segnents have to be made
to what out put_nask.

update stateruler

}

i nsert new segnent

}

check stateruler for hier. errors
out put segments fromthe |ast stateruler position

add group_nunbers to all segnents nade.

}

First the file which contains the logical combinations to eniakiead and a structure is
made to indicate what layers must be present for a segment to belong to a certain logical
formula, and what layers must not be present. This structure is used by the analysis of
the stateruler.

The stateruler fields in this case must contain as its statgewtors, one indicating the
masks present in the past(i.e. left of the stateruler) and one indicating the masks that will
be present in the future(i.e. right of the stateruler). Also the check types of the edges
must be stored in it.

In the stateruler process of making and analyzing stateruler proféets ere inserted
which are read from the input vin files. The selection criteria are thalue \of the
segment and its bottom yalue. Wheneer during the analysis of a stateruler a change of
layer combinations occurs, which is indicated by thet that that the past_vector is
different from the future actor the past_ and future_vectors are compared with the
logical structure built to see if the fieldvgs rise to the generation of line segments in one
or more of the output masks.

The Nelsis IC Design System

An Hierarchical DRC 11

If in a field diferent checktypes occur this indicates a possible violation of the
hierarchical rules. These errors are reporteddogl in the following cases:

« Overlap of interconnection layers without the presence of a terminal in that layer.
« Overlap of layers which do not interconnect.

« Overlap of different layers belonging to different cells indicating that one has possibly
created an unwanted element.

For a more detailed description of the prograbool, see appendix B.
4.2 Theprogram dimcheck

The prograndimcheck performs gap and width checks on one mask.
As its input it uses a file containing the masks theaelt@be hecled and the widths and
gaps the haveto obe. Also a reduced gap may be defined faplgngths smaller then a
certain \alue. For a description of this file see appendix Also the vin files mentioned
in the file abwe and a file containing the cell(s) to check must be present.
It uses the stateruler algorithm in a similar way as described in section 3. The gigbal w
the program works is:
for each cell do {
for each vin_file do {
whil e(not all segments read) {
read segment fromvin_file.
i f(x_segment != stateruler position) {
anal yze the stateruler for presence of

width and gap errors.
update staterul er

}

insert segnent in the stateruler.
}
}
anal yze the last stateruler for width or gap errors

}

The events of the algorithm here are the segments read from the vin file.
In the stateruler the following variables are recorded:

« The x_position of the edge in the field previous to the one where the stateruler is
analyzed.

+ The status of the layer (PRESENINOT_PRESENT CHG_TO_PRESENT or
CHG_TO_NOTPRESENT).

« The group_number of the edge.

« The group_number of the previous edge in the field.

The Nelsis IC Design System

An Hierarchical DRC 12

« The check_type of the edge, indicating from which cell the edge is originating.
» The check_type of the previous edge in the field.

+ The status of an help_layer

Depending on the status of the layer in a stateruler field during analysis, width or
gapchecks are performed in the x_ and y_direction. The group_numbers of the edges
thereby can be used to suppress gap errors that occur between edges of the same polygon.
The check_types are used to suppress errors that occur between edges belonging to the
same sub_cell, as these already will be reported when this sub_cell is checked.

For a more detailed description of the prograimcheck, see appendix C.

4.3 Theprogram dubcheck

The prograndubcheck performs @pchecks between to different masks and determines if

a mask is @erlapped by another mask with a certasue. Asits input it uses a file
containing the files that kia o be hecled with respect to each other and the distance or
overlap they haveto obg. Also an integer is gen to indicate what kind of gap_check or
overlap_check has to be performedror a description of this file see appendix A.
Furthermore the vin files stated in the file mentionedvabtust be present and a file
containing the cells to be checked.

It also uses the stateruler algorithm in a similar way as described in section 3. The global
way the program works is:

for each cell do {
for each Iine of check _file do {
while (segment_files not enpty) {

read segnment and sel ect segnment to insert

i f(x_segment != stateruler position)
anal yze the stateruler for the presence of

gap or overlap errors.

update stateruler

}

insert segnent in the stateruler

}

anal yze last stateruler.

}
}

The eents of the algorithm here are thegseents read from the twvin files. The
selection criteria again are the x_value and the y_bottom value of the segment.

In the stateruler the status (PRESENYOT PRESENT CHG _TO PRESENT or
CHG_TO_NAOPRESENT) of both masks is recorded, together with the groups and
checktypes of the edges and the presence of an helpmask.

The analysis of the stateruler is done in different procedures: one for gap errors and one
for each kind of werlap.

At present the following gap and@lap checks are implementeddanbcheck:

The Nelsis IC Design System

An Hierarchical DRC

13

gap checks which only report errors for norvedapping items.

gap checks which report errors foverlapping and non v@rlapping items
overlap checks for a fullwerlap

overlap checks for werlap over two gpposite sides

overlap checks only in places where the helpmask is not present

overlap checks on sides set earlierdmpcheck

For a more detailed description of the prograobcheck, see appendix D.

The Nelsis IC Design System

An Hierarchical DRC 14

5. Results

The programs described in the previous segments been written in the program
language C and are running under the UNIX operating system on a HP9000 series 500
machine. Allprograms in the design rule check system are based upon the stateruler
concept. Ashowvn in [1] this algorithm is linear with respect to the number of edges in
the design of an integrated circuit. So one might expect the checker system also to be
linear in this aspectTo investigate this the cheek has been applied to a cell containing

a random counter with about 1500 edg@sereafter the checker has been applied to

arrays of this cell of increasing siz&he time needed for the checking is record&dis
gives the following results:

array number corvert check
size ofedges| (hh:mm:ss (hh:mm:ss)
1x1 1476 38 1:50
2x2 204 2:01 6:57
3x3 13284 4:39 16:33
4x4 23616 9:59 33:34
5x5 3900 15:17 57:15
6x6 53136 24:39 1:14:10
7x7 72324 28:29 1:49:56
8x8 N464 43:40 2:27:32

TABLE 5.1. Checker cpu times

In this table under coert the cpu time to makthe line segment files is recorded and
under checér the cpu time needed to perform the boolean operations and do the actual
checks. Fronthis one may conclude that the check time indeed is about linear with the
number of edges. The resultsvhaeen obtained making no use of the hiergrahthe

cell. Thetime saed by making use of the hierarglof course is @ry much dependent of

the number of repetitions of subcells in the cdlhe cell rand_cnt mentioned alepis
hierarchically build up in the following way.

The Nelsis IC Design System

An Hierarchical DRC

15

rand_cnt

feedback

sel_reg8

(3%

mod2_fb

latch
(8%)

select

(8%)

Figure 51. Cell Hierarchy

In the net table the results of the checking of this cell in an hierarchical way and linear

are compared.

nds)

linear hierarchical
cell convert checker covert checler
(seconds)| (seconds) (seconds) (seco

mod2_fb 9 26 9 26

latch 10 24 10 24

select 8 20 8 20
feedback 13 28 13 23
sel_rg8 32 95 29 56
rand_cnt 38 110 20 34

TABLE 5.2. Comparison between hierarchical and linear expanded cells

We e that the time needed to check the cells in a hierarchical way is much less for top
level cells in this case,ven though some werlaps are presentEven more dramatic

changes in time may be expected if the repetitions of cells is greater.

The Nelsis IC Design System

An Hierarchical DRC 16

6. Conclusions
Very important issues in achieving efficient operations in design rule checking are:
1. Theexploitation of the hierargh

2. The generation of combination masks necessary for the checking of intermask
rules.

3. Thecomplexity of the scan itself.

We lelieve that we hae achieved near optimal results on the three couritBerarcly is
handled by making cells independent (for checking purposes) from their sub_cells
through the notions of 'augmented instance’ and 'checktypée stateruler concept
allows for a single pass to determine all combination masks neddwdscan itself is

linear in the number of edges. Although at present only implemented for paraxial
geometries the principles are generally applicable. At the moment we are extending the
method to general geometries.

The Nelsis IC Design System

An Hierarchical DRC 17

7. APPENDIX A: Implementation of Technology

The checks that ka o be performed on the artwork of an integrated circuit vary from
technology to technologyThis appendix deals with theaw the design rules must be
implemented in the design rule checker.

In general we may distinguish betweemttems with respect to the technology:

1. Dataabout the masks used in a certain technology,such as mask_name, mask_type
etc.

2. Datathat are specific for the design rule chaclsuch as minimum widths and
gaps etc.

The data mentioned under (1 are stored in a technology file for use by all programs
needing it. In this paper we will not discuss this, but assume this file to be préafent.

will restrict ourselves to the data mentioned under (2.

This data is stored in four files for each technology present.

1. Afile booldata, used by the programbool, in which the logical combinations of
the combination masks needed are described.

2. Afile dimcheckdatal, used by the programimcheck, which specify the width_ and
gap_checks that v o be arried out if the single_layer chemkautocheck is
used.

3. Afile dimcheckdata2, used by the programimcheck, which specify the width_ and
gap_checks in one (combination)mask thatehts be @arried out if the multy_layer
checkerdimcheck is used.

4. A file dubcheckdata, used by the prograrmdubcheck, which specify the gap and
ovelap checks that Wwa © be arried out between v different
(combination)layers.

For the format of these files see the next section.

Our design rule checker can handle design rules of one of the following types:

1. Wdth checks.
To implement a width check on a (combination)mask, the following steps must be
taken:

a. Inthe case of a combination mask, the logical formula of that mask, if not
yet present, must be included in the Bwldata. For the format of this file
see later on under the sub_section on file formats.

b. The (combination)mask to be check must be gen in the file
dimcheckdatal(2). In this file the minimum width of the mask must beepi
too. For the format of this input file see the sub_section on file formats later
on in this appendix.

The Nelsis IC Design System

An Hierarchical DRC 18

Examples of rules that can be tested this way are e.g. in the nmos process:
the width of the items of the diffusion mask, the width of thevactieas etc.

2. Gapchecks between items in one (combination)mask.
To implement a gap check on a (combination)mask, the following steps must be
taken:

a. Inthe case of a combination mask, the logical formula of that mask, if not
yet present, must be included in the Bldata. For the format of this file
see later on under the sub_section on file formats.

b. The (combination)mask to be check must be gen in the file
dimcheckdatal(2). In this file the minimum gp between areas of the mask
must be gien too. The possibility also exists to specify in this input a
reduced gap in case the gaplength is smaller than a cextainvglue. Wth
an helpmask specified ghimcheckdata2 one can change the test so, that the
gap is aly tested at places where the helpmask is not pre€arg.also can
determine if one wants error_messages frap_grrors within the same
polygon or from polygons with touching corners by specifying argerte
kind in the file dimcheckdatal(2). For the format of this file see the
sub_section on file formats later on in this appendix.

Examples of rules that may be tested thagy\&re in the nmos process e.g.: thp g
between unrelated diffusion areas, the gap between unrelated metal areas etc.

3. Gapchecks between wcombination)masks.
To implement a rule for the gapcheck betweea mmasks, the following steps must
be taken:

a. Inthe case that one or both masks are combination masks, the logical
formulas of these masks, if not yet present, must be added to the file booldata
(for format see sub_section on file formats).

b. The masks between which the check has to be carried out must be added to
the file dubcheckdata. The minimum gap between unrelated areas of the
masks must be specified here too. The possibility here @lstiat@ specify a
reduced gap if the gaplength is smaller than a certamen gvalue.
Furthermore with the integer kind one can specify if gap errors between
overlapping items must be reported or not .

Examples of rules that can be tested this way are e.g. in the nmos process:
the qap between an undercrossing and unrelated diffusion and the gap between
unrelated poly and diffusion.

4. Owerlap checks of (combination)masks.
To implement a rule to test anaslap of one combination(masky& another one,
the following steps must be taken:

The Nelsis IC Design System

An Hierarchical DRC 19

a. Inthe case that one or both masks are combination masks the logical
formulas for these masks, if not yet present, must be added to the file
booldata (for format see sub_section on file formats).

b. The masks concerned must beegiin the file dubcheckdata. Here also the
value of the @erlap must be gen. Onealso must specify what kind of
ovelap one wants to test, by specifying an integer kind. At present the
possibilities are:

« full overlap
« overlap over two gpposite sides
« ovelap only where a specified helpmask is not present

« left_right and/or bottom_topverlap only if an internally set array tells to
do so. This array is set by stating testslubcheckdata with kind is 4
and kind is 5.These tests also must be defined before this last kind of
overlap can be tested.

Examples of rules that can be tested this way are e.g. in the nmos technology:
ovelap of metal @er a connect_cut, werlap of poly ower an ative aea etc.

7.1 fileformats
This section describes the file_formats of the files used by the design_rule checker.

1. Thefile booldata, read by the programbool, contains the logical combination of
masks to be made.

Example:

od_vlin nw.vln sp_vlin ps_vlin con_vin cop_vln

cps_vlin cb_vlin in_vlin sn_vin . filenanes

od_vl n& nw vln . 0 0D3.1

od_vl n&nw_vi n 1 0D4.1.1

od_vl n&sp_vl n& nw_vln 2 OD. 3.2+SP/SN. 3. 3+4. 3
od_vl n&ps_vin 3 PS.3.1+PS. 5.1
sp_vln|sn_viln 4 SP.3.1+SN. 3.1
od_vl n&ps_vl n&w_vi n 5 SP. 3.2+SP. 4.2
od_vln& ps_vln 6 OD. 2.1

od_vl n&con_vl n& nw_vl n|

od_vl n&cop_vl n&nw_vl n| od_vI n&ps_vil n . 7 SP/SN. 3.3+4.3
od_vl n&sn_vl n&nw_ vl n : 8 SP/SN. 3.3+4. 3
od_vl n&ps_vl n& nw_ vl n 9 SN.3.2+SN. 4.2
od_vl n&con_vl n : 12 CON. 3.1+CON. 3.2
od_vl n&con_vl n&sn_vl n&nw_vi n : 13 CON. 3.3+CON. 3.4
od_vl n&cop_vin : 14 COP. 3. 1+COP. 3. 2

The Nelsis IC Design System

An Hierarchical DRC 20

od_vl n&sp_vl n&cop_vl n& nw vl n : 15 COP. 3. 3+COP. 3. 4
od_vl n&ps_vl n&cps_vin : 16 CPS. 4.1
cps_vln&ps_vln : 17 CPS. 4.2+CPS. 4.3

con_vlin&in_vlin|lcop_vin&in_vinlcps_vin&invin: 18 IN. 3.1
con_vln& n_vln|cop_vlin& n_vlin|cps_vin& n_vlin : 19 IN. 3.2
cb_vln& n_vin . 20 CB. 1.1

The first lines of the file until the first "’ contain the names of the input files that
are irvolved in the formulas to come. After that each line of the file contains the
logical formula to ma&. Inthis formula the logical AND operation is indicated by

the character '&’, the logical OR operation by ’|' and thgaien operation by the
character '''. The precedence of the operators is !, &, |. The end of the formula is
indicated by the "’ on the lineAfter this ":" a number is gien indicating the name

of the file where the result has to be stored. The name of the file becomes bool_nn,
where nn is the number just mentionedfter this number a string is \@n
indicating what design rule isvialved with the operation.

2. The files dimcheckdatal and dimcheckdata2, read by the prograndimcheck,
contain the names of the files to be checked and their width and gap dimensions.

Example:

nw_vl n NOFILE 12 15 000 NWI1.1+NW2.1
od_vin NOFILE 6 6 002 OD1.1+0D. 1.2
ps_vin NOFILE 6 6 002 PS 1+PS. 2.1
sp_vln NOFILE 12 12 000 SP.1.1+SP.2.1
sn_vln NOFILE 12 12 00 0 SN 1.1+SN. 2.1
con_vlin NOFILE 6 6 -162 CON1 1+CON 2.1
cop_vlin NOFILE 6 6-162 COP1 1+COP.2.1
cps_vlin NOFILE 6 6-162 CPS 1 1+CPS. 2.1
in_vlin NOFILE 7 7 002 INI1.1+IN 2.1
cb_vin NOFILE 150 80 0 0 2 CB.3.1+CB. 4.1

Each line of one of these files must contain the following items in the okaer gi
1. Thename of the file to be checked.

2. Ewentually the name of an help_layer; if not needed 'NOFILE’ is coded here.
If a layer is specified errors will only be reported in places where this layer is
not present.

3. Theminimum width of elements on the fildf it is zero no check will be
carried out.

4. Theminimum gap between twdements on the file. If it is zero no check
will be carried out.

5. Theminimum gap between elements on the file for short lengths of the gap.
If a negative \value is gven here the progrardimcheck will interpret it as an
maximum width check, with the maximum value for the widtegiin the
next item.

The Nelsis IC Design System

An Hierarchical DRC 21

6. Themaximum length of the gap for which the reduceg ghay be applied,
or if the previous item is wetive the maximum value of the width permitted.

7. Thevaue for kind. This variable may i@ acne of the following values:

0: ap_errors between edges of the same polygon and errors stemming
from touching corners will not be reported.

1. errors stemming from touching corners will not be reportedt b
gap_errors between edges of the same polygon will be reported.

2: ap_errors between edges of the same polygon will not be reparted, b
errors stemming from touching corners will be.

3: ap_errors between edges of the same polygon will be reported as well
as errors stemming from touching corners.

8. Astring indicating the design rule(syoived.

In this example only primary vin files are used. Hogr@®ne may also use vin files
made bynbool, so fies bool_nn.

3. Thefile dubcheckdata, read by the progrduaicheck, contains the names of the
files to be checked and the gap amerlap dimensions.

Example:

bool _0 nw vin NOFILE 0 20
bool _2 nw_vlin NOFILE 0 20
bool _1 nw.vin NOFILE 1
bool _3 ps_vlin od_vin
od_vln ps_vln NOFILE
bool _3 od_vln ps_viln
bool 1 bool 4 NOFI LE
bool _5 sp_vln NOFILE
bool 8 bool 7 od vin
bool 8 bool 7 od vin
bool 8 bool 6 NOFILE 1
od_vlin sp_vln NOFILE
sp_vln bool _5 NOFILE
bool _0 bool _4 NOFILE
bool _9 sn_vln NOFILE
bool _2 bool _7 od_vin
bool _2 bool _7 od_vin
bool _2 bool _6 NOFILE 1
od_vlin sn_vln NOFILE
od_vlin bool _9 NOFILE
bool _12 od_vI n NOFI LE
bool _12 ps_vi n NOFI LE
bool _13 sn_vi n NOFI LE
sp_vl n bool _13 NOFI LE
bool _14 od_vl n NOFI LE
bool _14 ps_vin NOFI LE

3.1 (0D - NW
3.2 (p+0OD - NW
4.1.1 (ovlp NW- OD)
3 (ovlp PS - gate)
4.1 (PS - QD)
5 (ovlp OD - gate)
3 (ovlp SP - QD)
3.2 (ovlp SP - p_chan_gate)
3.3+SN. 4. 3 (det _hor_connecti on)
3.3+SN. 4. 3 (det _ver_connecti on)
SP.3.3+SN. 4. 3 (ovlp OD - nwell _cont)
4
4
3
3
3
3
3
4
4

NRPRRRRNPR

.1 (SP - OD)

.2 (SP - n_chan_gate)

.1 (ovlp SN - QD)

.2 (ovlp SN - n_chan_gate)

. 3+SP. 4. 3 (det _hor_connecti on)

. 3+SP. 4. 3 (det_ver_connection)
.3+SP. 4.3 (ovlp OD - substr_cont)
.1 (SN - OD)

.2 (SN - p_chan_gate)

1 (ovip OD - CON)
2 (CON - PS)

3 (ovlip CON - SN
4 (CON - SP)

1 (ovip OD - COP)
2 (COP - PS)

OQUIOWOUITOONOOOODOODOONOOOOOOOOU O

OO WOUITOOOOOOOOOOODOOOOOOOOWOoOOo

cNeoNeoNeoNoloNeolNoNeololoNoNolNololoNeoNoNoloNoNoNoNeNoNe]

cNeoNoNeoNolNoNeolNoNeololoNoNoNololoNeoNoNoloNoNoNoNoNoNe]

OO0OO0OO0OO0CO0OO0OFrRPRWUPRMAROOORPRWURARRPLPLPONONOODO
2

The Nelsis IC Design System

An Hierarchical DRC 22

bool _15 sp_vin NOFILE 3 0 0 0 0 COP.3.3 (ovlp COP - SP)
sn_vln bool _15 NOFILE 0 3 0 0 0 COP.3.4 (COP - SN
bool _17 ps_vin NOFILE 4 0 0 0 0 CPS. 4.2 (ovlp CPS - PS)
bool _17 od_vin NOFILE 0 5 0 0 0 CPS. 4.3 (CPS - 0D
bool 19 in_vin NOFILE 3 0 0 0 0 IN. 3.2 (ovlp CO- IN)
bool 20 in_vin NOFILE 10 0 0 0 0 CB. 1.1 (ovlp CB - IN)

Each line of this file must contain the following items in the ordesngi

1. Thefirst file involved with the operation. In case ofedlap check this is the
file of whose elements ba o be oerlapped.

2. Thesecond file imolved with the operation. In case ofedlap check this is
the file whose elements\V& overlap the elements of the first file.

3. A helpfile involved in the operation.This file is used for checks with a

certain kind. If not needed, 'NOFILE’ is coded.

4. Theovelap the second file must Ve ove the first file. If it is zero, no
overlap check will be carried out.

5. Theminimal gap between norverlapping elements of the first and second

file. If it is zero no check will be carried out.

6. Theminimal gap that must be maintained if the length of thp i3 only
small.

7. Themaximum gaplength for which the reduced gap value may be applied.

8. Thevalue of the variable kindFor gap checks the value of kind means:

0: donot suppress gap errors afedapping items.
1: suppresgap erors of werlapping items.

For overlap checks the value of kind means:

0: checkfor a total werlap.

1. checkfor overlap over two gpposite sides.

2: onlycheck the werlap for places where the helplay is not present.

3: checkonly at the sides indicated by the conn_dir arr@lyis array will
be filled using checks with kind = 4 and kind = 5.

4: setsthe conn_dir array to 'check bottom and tyertap’ if in the same

polygon of the helplayer there is one area of the second layer ptesent

the left and one to the right of an area of the first layer.
5: setsthe conn_dir array to 'check left and rightedap’ if in the same

polygon of the helplayer there is one area of the second layer ptesent

the bottom and one to the top of an area of the first layer.

9. Astring indicating which design rules areatved.

The Nelsis IC Design System

An Hierarchical DRC 23

8. APPENDIX B: The program nbool
8.1 Introduction

The programnbool is the program that performs the logical operations between the
masks of a cell.
The program must be called as:

nbool [-c|-n] [-f] [cell_nane]

If nbool is called with the optionc the program will check the input for hierarchical
errors; if option-n is given it will not. If nbool has to operate on input files that
themseles are boolean combination files, the last option has to be chosen, othalseise f
error messages will ocgupecausenbool then does not kne what terminal masks are
involved with the boolean masks. Default hierarchical checks are carried out.

If nbool is called with the optionf the 'current working directory’ will be searched for
the presence of a filaooldata. If found this file will be taken as the technology _file for
nbool instead of the standard one for the technology one is working in.

If a cell_name is gien this given cell will be tested.If no cell_name is specifieabool
looks for the fileexp_dat in which the cell(s) to test then must beegi.

So as its input the program needs:

+ A file exp_dat containing the cell(s) the program has to be applied to, or a cell_name
specified as argument.

+ A file booldata containing the logical formulas the program has to perform upon its
input files. This file is either taken from the library or from the ’currerdrking
directory’.

« The vin files (edge files) of the cell(syotved in the logical combinations.
As its output the program generates the vin files of the combination masks of the
formulas. Furthermordhe program generates error messages when the rules about
hierarcly are violated.
The main parts of the program are:

+ The part that decodes the logical formulagegiin the file booldata and makes a
structure to check if a certain mask combination belongs to the fornwgla drhis
part will be described in the part about decoding of the design rules.

« The part that builds up and updates the staterdleis will be described in the part
about the stateruler.

« The part that analyses the stateruler for hierarchical errors. This will be described in
the part about hierargtcheck.

The Nelsis IC Design System

An Hierarchical DRC 24

« The part that analyses the stateruler and determines from that what edyé&sbea
output. Thiswill be described in the part about extract_profile.

« The part that adds the group_numbers to the vin files made. This will be described in
the part about add_groupnumbers.

8.2 Decodingthe design rules

Most of the design rulesvolve more than one maskTo check these rules masks must

be made containing logical combinations of the masks needed for that particular check.
The formulas of the masks that must be made for all the checks of a certain technology
must be gien on the file booldata, which is described in appendix A. This section will
describe the way these formulas are stored in memory to &loan efficient way to
produce all output masks wanted in one pass of the algorithrthe program this is

done in the routine mk_formstruct.

This routine starts by reading the first line of the file booldata which names all masks
involved in the formulas to be made.

Then the routine ini_heap is entered which esaén input structuref-or each file listed

in the input line, and if the hierarghmust be checked also for each terminal file, a
structure is set up containing:

« The name of the maskvialved.

« The binary number of the mask. If the name of the mask is known to the process, the
corresponding mask number is taken from it. If not it gets a number twice as high as
the preious unknown mask, starting at the mask _number twice as high as the highest
mask_number known in the process.

+ The mask_type of the maski the mask is known to the process the mask_type is
copied from it. So terminal masks become 1, connection masks become 2 and the
others become OFor masks unknown to the process the mask_type is set to
BOLEAN (=3).

+ The pointer to the vin file
» The data of the first edge in the vin file. So x_position,y_bottom, y_top, edge_type
and check_type.

The latter data will be updated with axnnBne segment when the program has inserted
the line segment in the stateruler.

After ini_heap has made this structure the procedure mk_formstruct starts reading the
formulas, line by line.For each line it sets up a c_structure 'form’ which contains:

« The name of the file,where the edges of the mask to form must be written. This name
is bool_xx, where xx is the form_number.

The Nelsis IC Design System

An Hierarchical DRC 25

A number of liffers to temporarily store the edge data before it is written to the
output file.

« A number curr_place indicating whichuffer has been filled last. Initially this
variable is set to -1 to indicate that all buffers are free.

+ A pointer to a list of min_term structures, which will be explained later on

A vulnerability mask containing all masks present in the formttas variable is not
strictly needed, but added for efficigmeasons.

A pointer to the next form_struct, or if there is noy arNULL_pointer.

The formula read e is decoded to fill this structure with its information. File names are
detected from the file and also the special characters ! (negotiation) | (logical or) and &
(logical and). Two masks are kept for each term of the formula:

« The masks that must be present for a mask combination to be part of the term of that
formula.

+ The masks that must NCbe pgesent for a mask combination to be part of the term of
that formula.

These wriables are updated in the procedure 'update_masks’ each time a '& or |
character is disa@red. Ifa term of the formula is finished (a | character disoed or

end of formula) theseaviables mask and not_mask are placed in a structure min_term
and this structure is added to the list of min_term structures of the forifhikis done

in the procedure add_minterm’. The variable vuln_mask of the form_structure there is
updated too.Upon leaving the procedure 'mk_formstruct’ we thus/ehareated a
structure lile the one shown in figure 8.1

The Nelsis IC Design System

An Hierarchical DRC 26

form
f_name
vuln_mask
mt_pntr | ———
curr_place min_term min_term
mask mask
edge buffers
not_mask not_mask
next next next
form
f name
vuln_mask
mt_pntr ———
curr_place min_term min_term
mask mask
edge buffers
not_mask not_mask
next next next

Figure 81. the formula structure

8.3 Thestateruler

In this chapter the contents of the stateruler and theitns formed and updated will be
described. Irthis program the stateruler consists of fields with the following variables:

« yb: the bottom of the field.
« yt: the top of the field.

« chk_type: the check type of the layers in the field. If the layeve lliferent
check_types this value is set to DIFF_CT (= -2).

+ p_check: A pointer to a structure in which the check_types are stored petflaifer
layers hae the same check type there is no need for such a structure and p_check is a
NULL_pointer.

The Nelsis IC Design System

An Hierarchical DRC 27

« p_chg_ct: A pointer to a list of structures which contain the old check type and the
mask a change of check_type occurred in. If no change of check_type occurred this
is a NULL_pointer.

« mask_past: This variable bitwise contains the layers present in the field before the
edges at the present x_value are installed.

« mask_fut:This variable bitwise contains the layers that are present after the insertion
of the edges at the present x_value.

« ov_mask: This ariable contains bitwise the layers in which aerflow of layers of
different check_type has occurred.

+ next: A pointer to the next stateruler field.

« prev: A pointer to the previous stateruler field.

The stateruler is initialized to contain one field, from yb = -MAXINT to yt = MAXINT

with no masks present,so mask_past = mask_fut = ov_mask = 0 and chk_type set to
INITIAL (=-1). The pointer to the check_type structure is set to NUOhrough the
procedure select_edge’ the edges thatvédo be nserted then are selected from the
edge_heap in such aawy that the edges with the lowest x_coordinate come first and for
edges with the same x_coordinate the one with the lowest bottom value comes first.

The procedure ’'insert_edge’ then inserts the edge in the statdruliis procedure the
stateruler is scanned from the current field until the esdge and a field in the stateruler

have a overlap. If this occurs, and the values of the bottom of the stateruler field and the
bottom of the ne edge do not coincide, the procedure ’split_field’ is called, which splits
the field in tvo parts, the split point being the bottom value of the eége. Thebottom

and top values of the twereated fields are updated and the otlauneas of the old field

are copied into the mefield. Thecurrent stateruler pointer is set to the top field of the
two fields being created/updateds long as the top value of the next fields in the
stateruler is not greater then the t@tue of the ne edge, the fields in the stateruler are
updated with information from the weedge. Thisis done in the procedure 'update_fld’.

In this procedure the values of mask fut, ov_mask and chk_type are updated, according
to the values of the edgéf. the top value of the stateruler field becomes smaller then the
top value of the ne edge a split is carried out with the procedure ’split_field’ and the
bottom field of the tw newly created/updated fields is updated with the procedure
‘'update_fld'.

This process of selecting and inserting fields is continued untivaxnealue is found.

Then the stateruler (if this option is chosen) is chddor hierarci errors and after that
analyzed to extract the edges for the boolean files to be nidum the stateruler is
updated. Thigs done in the routine 'update_srn this routine first the value of the
mask_past in the fields are set to mask_fut, and the check_types of the stateruler fields are
updated. Aftethat fields containing the same values for the masks and check_types are
joined.

The Nelsis IC Design System

An Hierarchical DRC 28

After being updated a mestateruler is built for the next xalue until all edges a been
read. Aschema of the operations ivg in figure 8.2

| select_edge |

| sr_pos = edge_pog

| insert_edge |

| select_edge |

I

was an elge n
present?

y
edge_pos = | check_hierarchy |
Sr_pos? l
n | extr_profile |
| check_hierarchy | l
| | update_sr |
| extr_profile |
| END
| update_sr |

l

Figure 82. Stateruler main flow

8.4 Thehierarchy check

The checking of the hierargtrules is carried out in the procedure 'check_hiendrch
This procedure contains a loop for checking all of the fields in the stateruler for:

« The ov_mask.
If a bit in this mask is set, indicating that avextap in the corresponding mask has

occurred, the following is done:

The Nelsis IC Design System

An Hierarchical DRC 29

— If the mask in which theverlap occurred is a connection mask, a check is carried
out to see if the corresponding terminal mask is present. If not an error massage
is generated, telling where the error occurred and in which mask.

— If the layer is not a connection mask arming massage is generated, telling
where the werlap took place and in which mask.

« The check_types.
If the variable chk_type in the stateruler field is DIFF, @dicating that in the field
layers with different check_types are present, the following actions are taken:
A check is made to see if the feifence is caused by a check_type 0 in a connection
mask with the presence of a terminal in the same lapdicating an werlap
permitted. Inthis case no messages are generated. If the difference is not caused by
the situation described al® a warning massage is generated telling the place where
different checktypes occuand the checktypes of the layers present.

« Change of checktype.
If a change of checktype in the y_direction occurs the following steps are taken:

« If the change tads place in a connection layer a check is carried out if a terminal
is present therelf not, an ERROR message is generated, stating where the error
occurred and in which layer.

« If the change takes place in another layer a WARNING is generated, stating the
place of the change of checktype and the layer it occurred in.

8.5 Analysisof the stateruler

The analysis of the staterulés carried out in the procedurexi_profile’. It finds the

edges that he © be atput in the vin file of the corresponding formulal this
procedure a loop is set up, whiclkaeines each stateruler field. If the values of
mask_past and mask_futféif, indicating that one or more layersvhahanged state, the
procedure 'bff _edge’, which does the actual work is called. The maiw fd this
procedure is gen in figure 8.3

The way the program checks if a certain mask combination belongs to a formula is done
using the structure made with mk_formstruct. The mask combination is compared to the
masks and not_masks of the min_terms of the formifilall the masks present in the
variable mask of the min_term structure are also present in the mask combination to
check, and the masks set in tlzgiable not_mask do not appear in the mask combination

to check, the mask combination belongs to that min_term, and hence to the formula.
According to the presence of mask_past and mask_fut in the formula the pres_flag is set.
If mask past belongs to the formula and mask fut does not, pres flag is set to 1,
indicating a stop edgdf mask_past does not belong to the formula and mask_fut does,
pres_flag is set to -1, indicating a start edge. If mask_past and mask_fut both belong to
the formula, or if the both do not belong to the formula, pres_flag is set to 0O, indicating
that no edge has to be output.

The Nelsis IC Design System

An Hierarchical DRC 30

buff_edge

|

form := first form

pres_flag :=0
mask_past belon —
to the formula? pres_flag :=
n
mask_fut belong pres_flag :=
to the formula? prres_flag - 1
n
pres_flag = 0? y
n

v edge connected te
- previous edge?

add_edge update_edg?

more forms left?>0
M
| form := nextform| | return |

|

Figure 83. buff_edge main flow

After the value of the pres_flag is established, and the pres_flag = 0, no further actions are
taken. Ifthis value not equals zero,dwases may occur:

+ The bottom value of the newly found edge and the top value of theuféestell edge
of the formula are the same and so are their x_positions.
In this case the lasulfered edge is updated, i.e. its top value and its connection type
are updated. This is done in the procedure 'update _edge’.

« If the values mentioned ab® d not coincide, the edge is added to the next place in
the tuffer. If all buffers of the formula ha been filled, the bffer is appended to the
file, whose name is ggn in the f_name ariable in the form_structure. These actions
are carried out in the procedure 'add_edge’.

The Nelsis IC Design System

An Hierarchical DRC 31

8.6 Thegeneration of the group_numbers(connectivity)

The group_numbers of the edges indicate to which connected regyobetbag. Thg

are generated aftabool has generated the edges. This is done on temporary files, which
for efficiengy reasons are in binary formathey havea boolean name, with btl added to

it. For example bool_2bt1.

Now the files generated are read one by one and a pointer structure is set up in the same
way as it is dne in i.e. the programmakevin. The pointers are added to the file and
written on a file with the addition of bt2 (e.g.bool_2bt2), and the btl_file isveshfimm

the system.The bt2 file then is read and the pointers are replaced by their corresponding
group_numbers. Thethe edges are written to the boolean file that remaingisteace

and is used by the programisncheck anddubcheck. These files (e.g bool_2) are in the
known vin_format. The bt2_files are also ramibfrom the system.

The Nelsis IC Design System

An Hierarchical DRC 32

9. APPENDIX C: The program dimcheck
9.1 Introduction

The programdimcheck checks a cell for the presence of width apgrrors in a single
(combination) layer.
The program is called as:

dintheck [-a|d][-d][-f][-t][-9g][cell _nane]

The meaning of the options is:

-a The program is used as a part of the single layer @rembtocheck(see
appendix E), and the fidimcheckdatal is taken as design_rule input_file.

-d The program is used as a part of the multi_layer checkmcheck(see
appendix E), and the fildimcheckdata2 is taken as design_rule input_file.

-f The program looks for the filelimcheckdatal (or dimcheckdata?) in the
current working directory instead of taking the standard one for the
technology used.

-t This option has been added for debugging purposes. It generates a lot of
test _data.
-g With this option @p_errors within the same polygon, which otherwise may

be suppressed, arenalys reported.

cell_name Thaame of the cell to be tested. If not specified the program looks for a file
exp_dat in which the cell(s) to be tested must beegi

So as its input the program needs:

+ Afile exp_dat containing the cell(s)limcheck has to be applied to, or a cell_name as
argument in the call of the program.

« A file dimcheckdatal (or dimcheckdata?) containing the layers to check and thapg
and widths permitted.

« The vin files of the cell(s) to be tested.

As its outputdimcheck generates error messages on the terminal, stating the ruleathat w
violated and the place where the error occurred.

The program may be divided intodwnayor parts:

+ One part consisting of the building and updating of the stateruler.

The Nelsis IC Design System

An Hierarchical DRC 33

« A second part consisting of the analysis of the stateruler and the generation of the
error messages from it.

These tw parts will be discussed in the sections 'Making and updating the stateruler’ and
'The analysis of the stateruler’ respgely.
9.2 Making and updating the stateruler

In this sections the contents of the stateruler fields and the wayathdormed and
updated will be described.
In dimcheck the fields of the stateruler hold the following variables:

« xstart: The x_position in which the the field was started.
+ yb: The bottom of the field.

« yt: The top of the field.

« lay_status: The status of the layEhis may be:

— NOT_PRESENT This means that the layer is not present at the stateruler
position.

— CHG_TO_PRESENTThis means that the layer starts at the stateruler position.

— CHG_TO_NOTPRESENT This means that the layer stops at the stateruler
position.

— PRESENT This means that the layer is present at the stateruler position.

+ helplay_status: The status of the helplayer if used.

« group: The group in the layer the field belongs to.

« group_old: The group of the edge before the last one.

+ chk_type: The checktype of the layer in the field.

+ chk_type_old: The checktype of the edge before the last one.

+ next: A pointer to the next stateruler field.

« prev: A pointer to the previous stateruler field.
Upon initiation the stateruler consists of one field, reaching from -MAXINT to MAXINT
with lay_status NOT_PRESENT , xstart = -MAXINfext and prer pointing to the field
itself and the other variables set to zero.
After the initiation a loop is started in which edges are read from the vin file(s) and
inserted into the stateruler (procedure insert_edge). The loop is continued until all edges

with the same x_value t@ keen inserted. The stateruler for that alue then is
completed, and an analysis of the stateruler then wil pieice (procedurexér profile).

The Nelsis IC Design System

An Hierarchical DRC 34

The stateruler is updated (procedure update_sr) amd/Indiles are read and inserted to
form the stateruler for the next x_position. This process is repeated until all estlges ha
been read from the vin file.

The process described afeas arried out in the procedure main_check.

As stated abee the insertion of ne edges in the stateruler is done in the procedure
insert_edge. Irthis procedure the fields of the stateruler are scanned from the current
position to the topmost position to see if aertap with the edge to insert is presettt.

this is the case and the bottom values of the field and thedge do not coincide, the
stateruler field is split into twand the \ariables are copied from the old field. As long as
the top alue of the edge is greater then the top value of the stateruler fields, the latter are
updated. Ifthe top value of the me edge becomes smaller as the tagdue of the
stateruler field, again a split is carried out and the bottom field of theewy created

fields is updated. The splitting of the fields is carried out in the proceshlite fld’, the
updation of the fields is done in the procedure 'update_fld'.

An example is shown in figure 9.1.

stateruler new_edge new_stateruler
+split_fld -+
Pt Iupdate_ﬂd
T {update_fld I
update_fld
split_fld - +

Figure 91. Building the stateruler

In the procedure 'update_sr’ the stateruler is updated after being analyzed. This means :

— The lay_status is updated: CHG_TO_PRESENT becomes PRESENT and
CHG_TO_NOTPRESENT becomes NOT_PRESENT.

— The group_nhrcheck_type and xstart are updated

— If possible stateruler fields are merged.i.e:
If two adjacent fields hae:

— the same checktype

The Nelsis IC Design System

An Hierarchical DRC 35

— the same group_nbr
— the same lay_status

— the same xstart or for both fields holds stateruler position - xstart >=
MAXINFLUENCE

the two fields are merged.
9.3 Theanalysis of the stateruler

The analysis of the stateruler to detect possible design rule errors is done in the procedure
‘extr_profile’. Inthis procedure all fields of the stateruler are checked for possible design
rule errors. According to the lay_status the following checks are carried out:

« lay_status = PRESENT.
This means that no change of lay_status has taken place, so nothing needs to be
checked.

+ lay_status = CHG_TO_PRESENT.
This means that a nearea has started. In this case the following checks are carried
out:

— A check to see if the distance between the previous edge andvtledgeeis great
enough (procedure 'check_xgap’).

— Ifin the previous stateruler field the layer is not present a check to seeibpse
edges are not too close to the bottom of thev nedge (procedure
‘check_g_circle’).

— If in the net stateruler field the layer is not present a check to see\ifopse
edges are not too close to the top of the edge (procedure 'check_g_circle’).

— If in the previous stateruler field the lay_status is not CHG_TO_PRESENT and in
the net stateruler field the lay_status is not PRESENT (in which cases aniferror
ary, dready has been reported), a check of the y_width of the edge starting in the
stateruler field is carried out (procedure 'check_ywidth’).

« lay_status = CHG_TO_NOTPRESENT
This means that an area has stopped. In this case the following checks are done:

— A check to see if the area that stopped was not too small in the x_direction
(procedure 'check_xwidth’).

— If the previous stateruler field the lay_status is not CHGs NOTPRESENT (in
which case an errpiif any, dready has been reported) and in theviomes
stateruler field the lay_status is PRESENT a check is carried out to see if the area
that is left under the stop is not too small in the y_direction (procedure
‘check_ywidth’).

The Nelsis IC Design System

An Hierarchical DRC 36

— Under these conditions also a check is done to see if the layer is present in a
circular area around the bottom of the stateruler field (procedure
‘'check_w_circle’).

— If the layer is not present in the yieus staterulefield a gap check is done to
see if the gap between the stopped area and the first areeitisloot too small
(procedure 'check_ygap’).

— If the net stateruler field the lay_status is not CH® NOTPRESENT (in
which case an errpif any, dready has been reported) and in the next stateruler
field the lay_status is PRESENT a check is carried out to see if the area that is left
above the stop is not too small in the y_direction (procedure 'check_ywidth’).

— Under these conditions also a check is done to see if the layer is present in a
circular area around the top of the stateruler field (procedure 'check_w_circle’).

— If the layer is not present in thextetateruler field a gap check is done to see if
the gap between the stopped area and the first ameaitds not too small
(procedure 'check_ygap’).

+ lay_status = NOT_PRESENT.
This means that no change of lay_status has taken place, so nothing needs to be
checked.

The width_checks mentioned will only be carried out if according to the file
dimcheckdatal(2) the width_flag is set. The gap_checks are only carried out if the
gap_flag is set and if the helplay_status is NOT_PRESHNThelplayer is specified.

In the check routines check_xwidth etc. gap and width errors will not be generated if the
edges hee the same checktype (except if it is zero). This situation means that the error
originates from a subcell and has already been reported there.

The Nelsis IC Design System

An Hierarchical DRC 37

10. APPENDIX D: The program dubcheck
10.1 Introduction

The prograndubcheck is the program that does the checking feerlap and gap errors
between tw (combination)masks.
It is called as:

dubcheck [-f][-t][cell _nane]

The meaning of the options is:

-f The program looks for the fildubcheckdata in the current working directory
instead of taking the standard one from the technology used.

-t This option has been added for debugging purposes. In generates a lot of
test data.

cell_name Theame of the cell to be tested. If not specifiletdcheck looks for a file
exp_dat in which the cell(s) to be tested must beegi
So as its input the program needs:

«+ A file exp_dat containing the cell(sylubcheck has to be applied to, or a cell_name
must be gien in the call of the program.

« A file dubcheckdata containing the layers to check and vedaps and gps
permitted.

+ The vin files of the cell(s) to be tested.
As its outputdubcheck generates error messages on the terminal, stating the ruleathat w
violated and the place where the error occurred.
The program may be divided intodwnayor parts:

+ One part consisting of the building and updating of the stateruler.

« A second part consisting of the analysis of the stateruler and the generation of the

error messages from it.

These tw parts will be discussed in the chapters 'Making and updating the stateruler’
and 'The analysis of the stateruler’ respestyi
10.2 Making and updating the stateruler

In this chapter the contents of the stateruler fields and the wgyatbeformed and
updated will be described.

The Nelsis IC Design System

An Hierarchical DRC 38

In dubcheck the fields of the stateruler hold the following variables:

xstart[0]: The x_position of the previous edge of maskl in the field.
xstart[1]: The x_position of the previous edge of mask2 in the field.
yb: The bottom of the field.

yt: The top of the field.

lay_status[0]: The status of maskl. This may be:

— NOT_PRESENT This means that the layer is not present at the stateruler
position.

— CHG_TO_PRESENTThis means that the layer starts at the stateruler position.

— CHG_TO_NOTPRESENT This means that the layer stops at the stateruler
position.

— PRESENT This means that the layer is present at the stateruler position.

lay_status[1]: The status of mask2.

helplay_status: The status of the helplay.

group[0]: The group of mask1l in the stateruler field.
group[1]: The group of mask2 in the stateruler field.
chk_type[0]: The checktype of mask1l in the stateruler field.
chk_type[1]: The checktype of mask2 in the stateruler field.
next: A pointer to the next stateruler field.

prev: A pointer to the previous stateruler field.

Upon initiation the stateruler consists of one field, reaching from -MAXINT to MAXINT
with lay_status NOT_PRESENT , xstart = -MAXINfext and pre/ pointing to the field

itself and the other variables set to zero.

After the initiation a loop is started reading edges from the vin files (procedure get_vin),
selecting the one with the smallest x_value and the smalidsé wf y bottom and
inserting them into the stateruler (procedure insert_edge). The loop is continued until all
edges with the same x_valuevhdeen inserted. The stateruler for that x_value then is
completed, and an analysis of the stateruler then widl pdce (extr_*** procedures).

The stateruler is updated (procedure update_sr) amd/Indiles are read and inserted to
form the stateruler for the next x_position. This process is repeated until all eslges ha
been read from the vin file.

The process described afeas arried out in the procedure main_check.

As stated abee the insertion of n@ edges in the stateruler is done in the procedure

The Nelsis IC Design System

An Hierarchical DRC 39

insert_edge. Thigprocedure is similar to the one used in the progdamcheck, with
only a difference in the variables that are present in the stateruler fields.

In the procedure 'update_sr’ the stateruler is updated after being analyzed. This means :

« The lay _status is updated: CHG_TO_PRESENT becomes PRESENT and
CHG_TO_NOPRESENT becomes NOT_PRESENT in lay_status[0] , lay_status[1]
and helplay_status.

« The group_nhrcheck_type and xstart are updated for both masks.

« If possible stateruler fields are merged.i.e:
If two adjacent fields hae:

— the same checktype for both masks
— the same group_nbr for both masks
— the same lay_status for both masks

— the same xstart or for both fields holds stateruler position - xstart >=
MAXINFLUENCE for both masks
the two fields are merged.

10.3 Theanalysis of the stateruler

The analysis of the stateruler to detect possible design rule errors is done in the
procedures ’extr_profile’ , 3dr_overlap’ , ’extr_overlapl’ , ’extr_overlap2’ and
‘'extr_overlap3’. Thefirst procedure is used to deteetpgerrors, the last ones to detect
overlap errors.

10.3.1 detection of gap errors
In the procedure extr_profile all fields of the stateruler are eldeddr possible ap
errors. Accordindo the lay_status of the masks the following checks are carried out:

+ lay_status[0] = CHG_TO_PRESENT.
This means that an area in mask1 is starting. In this case the following checks are
done:

— A check is carried out to see if maskl and mask2 de &aoverlap here. In this
case the status of mask2 is PRESENT or CH&G HRESENT No eror eists
then and a structure is set up, to indicate that the group of the item in maskl and
the item in mask2 & an overlap. If other errors occur between these ealent
groups of maskl and mask2 yheill be suppressed is this is wanted.

— If the masks hae ro overlap the distance to the last recorded edge of mask2 in the
field is checked.

— If lay_status[0] of the previous or next field in the stateruler i NNRESENT
checks are carried out to see if no error exists in the areas left under vepecti

The Nelsis IC Design System

An Hierarchical DRC 40

left above the edge.

+ lay_status[1] = CHG_TO_PRESENT.
This means that an area in mask2 is starting. In this case the same checks are carried
out with respect to mask1, as in the previous case with respect to mask2.

« lay_status[0] = CHG_TO_NOTPRESENT
This means that an area in maskl has stopjethis case the following checks are
done:

— A check is carried out to see if maskl and mask2 de e overlap. An
equiaence of groups then is set up again.

— If no overlap occurs a check is carried out to see if no error occurs at the bottom
of the field and a check is carried out to see if no error occurs at the top of the
field.

+ lay_status[1] = CHG_TO_NOTPRESENT.
This means that an area in mask2 has stoppedhis case the same checks are
carried out with respect to mask1, as in the previous case with respect to mask2.

In the check routines no errors will be reported betweenetiges if thg havethe same
check_type,and this checktype does not equal zero, indicating that the edges stem from
the same instance of a subcell. If the errarstghey will be reported when the subcell is
checled. If the variable kind is made zero, also no errors between areas of maskl and
mask?2 that hae an overlap will be reported. Else these errors will be reported.

The errors found in this case are not immediately shown, but temporarily storethfirst.

this way one can suppress purely geometric errors, which turn out to be unimportant
when connectivity is tadn into account (this is an important topic in hierarchical design,
because the design rule checker output often gets clothered with unimpatdist 'f
obstructing the really important messages).

10.3.2 detection of overlap errorsof kind 0

In the procedurextr _overlap checks are carried out to see if all areas of the first layer are
fully overlapped by a distanceverlap by the areas of layer 2. According to the
lay_status of the masks in the stateruler fields the following checks are carried out:

« lay_status[0] = CHG_TO_PRESENTN this case the next checks are carried out:
— A check to see if lay_status[1] is PRESENTnot an error is recorded.

— If PRESENT a check to see if the stop of the last area in mask2 in the stateruler
field is at least a distance ofanlap smaller then the position of the stateruler.

— Checks to see if the areas left under the bottom of the edge and left upper of the
top of the edge are eered by mask2.

The Nelsis IC Design System

An Hierarchical DRC 41

+ lay_status[1] = CHG_O®_NOTPRESENT In this case the next checks are carried
out:

— A check to see if lay_status[1] is NOT_PRESEN(Tnhot an error is recorded.

— A check to see if no area of mask1 is preseat a dstance of werlap before the
stop of mask2.

— If not a check to see if maskl is not presemr @ dstance of werlap under or
above the edge.

— A check to see if maskl is not present left under the top of the edge or i&ft abo
the bottom of the edge.

Errors are reported immediately in this caSéhe check procedures are such that no
errors are generated if the area of mask1l in the stateruler field has a checktype not equal
zero, indicating it originates from a subcell. In this case the error will already be detected
when the subcell is checked.

10.3.3 detection of overlap errorsof kind 1

In the procedurextr _overlapl checks are carried out to see if all areas of the first layer
are werlapped by a distanceverlap by the areas of layer 2 in the x_ or y_direction.
According to the lay_status of the masks in the stateruler fields theifal@hecks are
carried out:

« lay_status[0] = CHG_TO_PRESENTN this case the next checks are carried out:

— if lay_status[1] = PRESEN® deck is carried out to see if theedapping area
started at least a distancedap earlier.

— if lay_status[1l] = CHG @ PRESENT checks are carried out to see if the
overlaps wer the starting area of layerl to the top and bottom are great enough.

— if lay_status[1] = NOT_PRESENT or CHGOTNOTPRESENT an error is
generated.

« lay_status[1] = CHG_O®_NOTPRESENT In this case the & checks are carried
out:

— if lay_status[0] = NO_PRESENTa check is carried out if the stop edge of the
area to bewerlapped has occurred at least a distanveglap before.

— if in the previous stateruler field lay_status[1] = PRESENT and lay_status[0O]
NOT_PRESENTa dheck is carried out to see W& a dstance of at leastverlap
under the stateruler field no area in mask1 is present.

— if in the net stateruler field lay status[l] = PRESENT and lay_status[0] =
NOT_PRESENTa ctheck is carried out to see W& a dstance of at leastverlap
over the stateruler field no area in maskl is present.

The Nelsis IC Design System

An Hierarchical DRC 42

Errors are reported immediately in this caSéhe check procedures are such that no
errors are generated if the area of mask1l in the stateruler field has a checktype not equal
zero, indicating it originates from a subcdlh this case the error will already be detected
when the subcell is checked.

10.3.4 detection of overlap errorsof kind 2

In the procedurextr _overlap2 checks are carried out to see if all areas of the first layer
are werlapped by a distanceverlap by the areas of layer 2 at places where the helplayer
is not present. According to the lay_status of the masks in the stateruler fields the
following checks are carried out:

« lay_status[0] = CHG_TO_PRESENTN this case the next checks are carried out:

— if helplay_status '= PRESENT a check is carried out to see if wbdapping
started at least a distanceedap earlier.

— if in the previous stateruler field lay_ status[0] = N®RESENT and the
helplay_status is NOT_PRESENT of CHG TNOTPRESENT here, a check is
carried out to see if theverlap to the bottom is large enough.

— if in the ne&t stateruler field lay status[0)] = NOT_PRESENT and the
helplay_status is NOT_PRESENT of CHG TNOTPRESENT here, a check is
carried out to see if theverlap to the top is large enough.

+ lay_status[1] = CHG_®_ NOTPRESENT and helplay_status != PRESEN this
case the next checks are carried out:

— A check to see if the mask teanlap does not exist at least for a distancerlap
before the x_position of theverlapping edge.

— Ifin the preious stateruler field lay_status[1] = PRESENT a check is carried out
to see if the werlap of layer[1] to the bottom of layer[0] is large enough.

— If in the next stateruler field lay_status[1] = PRESENT a check is carried out to
see if the werlap of layer[1] to the top of layer[0] is large enough.

Errors are reported immediately in this caSéhe check procedures are such that no
errors are generated if the area of mask1l in the stateruler field has a checktype not equal
zero, indicating it originates from a subcell. In this case the error will already be detected
when the subcell is checked.

10.3.5 detection of overlap errorsof kind 3

In the procedure x@r_overlap3 overlap checks are carried out in accordance to the
direction gven in the con_dir arrayThe latter is initialized if anwerlap check with kind

=4 or kind = 5 is gven. Accordingto the lay_status of the masks in the stateruler fields
the following checks are carried out:

« lay_status[0] = CHG_TO_PRESENTN this case the next checks are carried out:

The Nelsis IC Design System

An Hierarchical DRC 43

— If the direction is (BOTOM + TOP) a test is carried out to see if tivertap to
the left of the area toverlap is large enough.

— If the direction is (LEFT + RIGHT) tests is carried out to see if edaps to the
bottom and the top are large enough.

« lay_status[1] = CHG_O®_NOTPRESENT In this case the next checks are carried
out:

— If the direction is (BOTOM + TOP) a test is carried out to see if tivertap to
the right of the area toverlap is large enough.

— If the direction is (LEFT + RIGHT) tests is carried out to see if Yiedaps to the
bottom and the top are large enough.

Errors are reported immediately in this caSéhe check procedures are such that no
errors are generated if the area of mask1l in the stateruler field has a checktype not equal
zero, indicating it originates from a subcdih this case the error will already be detected
when the subcell is checked.

10.3.6 setting of the con_dir array

The setting of the con_dir array needed feerlap checks with kind = 3 is done in the
procedures det_conn_hor and det_con_ver.

Det_con_hor adds to the appropriate entry in the array conn_amltreeLEFT if, under
presence of the same polygon of the hel@aytem of the second ggn file is present to

the left of the item of the first\ggn file under consideration. It adds the value RIGHT if
under the same conditions an item of the second file is to the right of the item of the first
file.

Det_con_er adds to the appropriate entry in the array conn_arratue BO TOM if,

under presence of the same polygon of the helplayjtem of the second gn file is
present to the bottom of the item of the firstegifile under consideration. It adds the
value TOP if under the same conditions an item of the second file is to the top of the item
of the first file.

The procedures det_con_hor and det_con_ver are performed if a check with resp. kind
4 and kind = 5 is present in the fitieibcheckdata. To perform an @erlap check of kind =

3, the checks with kind = 4 and kind = 5 must be performed first.

The Nelsis IC Design System

An Hierarchical DRC 44

References

1.

M. Newell and D.T Fitzpatrick, “Exploitation of Hierarcit in Analysis of
Integrated Circuit Artvark,” |IEEE Trans. on CAD CAD-1(4) pp. 192-200 (Oct.
1982.).

J.T Fokkema and T.G.R. van LeukefA h €fficient datastructure and algorithm for
VLSI artwork \erification; Proc. IEEE ICCD-83, New York, pp. 350-353 (Oct.
1983).

The Nelsis IC Design System

CONTENTS

I 0 o o 11 o 1o o USRI 1

2. Augmentednstancing Of @ CelL...........uuiiiiiiiiiiiii e 2

3. LineSegment Corersion, the Stateruler................eeeveiiiiieiiiiiiiiiiieeeee e 5

4. DeSignRUIE CheCKING........uuuiiiiiiiiiiiiiii e 8
4.1 Theprogram NDOQL..........coooiiiiiiiiii e 10
4.2 Theprogram diMCNECK............uuiiiiiiiiiaee e 11
4.3 Theprogram dubChECK........ccoooiiiiii i 12

ST TS| 14

B. CONCIUSIONS. ...ttt e e e e e e e et e e e e e e e e e e e e e bbb arr e e e eeeeeens 16

7. APPENDIXA: Implementation of @hnologycccveveviiiiiiiiiiiiiiiecceeeeen 17
7.1 FHETOMMALS ... 19....

8. APPENDIXB: The program NDOOL...........cuiiiiiiiiiiiiiiiiieeceee e 23
8.1 INErOTUCTIONutiiiiiiiie et e e e e e e e e e e e e e e e anns 23
8.2 Decodinghe deSigN TUIES.........uuuiiiiieieeeis e 24
8.3 TRESTAEIUIET ... 26....

8.4 Thehierarcly ChecCK........ccoooiiiiiiii s 28..
8.5 Analysisof the Stateruler............ueiiiiiiiiiiii e 29
8.6 Thegeneration of the group_numbers(Conn&g)..............ooeeeiviiiiieeeenen. 31

9. APPENDIXC: The program dimcheck..............ciiiiiiiiiiiiiiiiiiiiieeee e, 32
9.1 INETOTUCTION ...ttt e e e e e e e e r e e e e e e e e e e e anns 32
9.2 Makingand updating the Stateruler..............ueveeiiiiiiiii e 33
9.3 Theanalysis of the stateruler...............cccoiiiiiiiiii 35

10. APPENDIXD: The program dubchecCk............cccceeiiiiiiiiiiiiieeei 37
L0 T R 1 (o To [F o1 1 o] 4 OO P PP PPPP PP 37
10.2 Makingand updating the Stateruler..............ooooiiiiiiiiiiee e, 37
10.3 Theanalysis Of the StaterUler...........ccccoooiiiiiiiiiiiiieee e 39

RETBIEINCES ...ttt e e e e e e e e e e e e e 44.......

Figure 2.1.
Figure 3.1.
Figure 3.2.
Figure 4.1.
Figure 5.1.
Figure 8.1.
Figure 8.2.

LIST OF FIGURES

Cell INtErCONNECHIANuuiiiiiiiiiiee e 2
Stateruler Scan AlgOrthm...........oooiiiiiiiiii e 5
Polygon and line segment representatian...............cccccvvvveeiiiiieeeeeennn. 6

The checker dimCheCK............ooooiiiiiiiii s 9

(7] | o 11T = T o T 15
the fOrMUIA SITUCTUIE. ... e 26

Stateruler MaAaIN Fl0.......c. e 28

Figure 8.3.buff_edge main fMycooomrmiiiiiii e 30

Figure 9.1.

BUilding the StaterUler...........uveeiiiie s 34

TABLE 5.1. Checker cpu times

LIST OF TABLES

TABLE 5.2. Comparison between hierarchical and linear expanded.cells......... 15

