
The Space Articulation

Network Reduction Heuristic

S. de Graaf

Circuits and Systems Group

Faculty of Electrical Engineering,

Mathematics and Computer Science

Delft University of Technology

The Netherlands

Report EWI-ENS 11-08

November 1, 2011

Copyright © 2011 by the author.

All rights reserved.

Last revision: November 3, 2011.

articulation reduction 1

1. INTRODUCTION

When doing a space resistance extraction, the nodes are classified with the area flag for

articulation reduction. The area flag can have three values:

0 = non equi-potential node

1 = equi-potential line node

2 = equi-potential area node

The area flag is set with functions makeLineNode and makeAreaNode in the code. Also

the number of sets is counted with variables equiLines and areaNodes for statistics. To

print these statistics, use space option -i on the command line. The variable

areaNodesTotal is used to count the "total ready area nodes". This counting is done in

function readyNode by testing the node area flag. The number of area nodes in a ready

group can be printed with parameter debug.ready_group. The number is only printed

for nodes w/o set term and/or set keep flag.

What is an equi-potential line node?

If we look where and when function makeLineNode is called, we see that it is called in

function doEquiRectangle when variable equi_line_area is set and only for a high res

conductor. Note that equi_line_area is a parameter, which is default "on". However,

note that function doEquiRectangle is only called for rectangle shaped tiles and possibly

only when parameter equi_line_ratio is greater than zero (default "0"). Function

doEquiRectangle is only called when the tile is a only conTB or only conLR type tile.

Note that the conTB tile may not have extra points on the vertical tile edges and the ratio

dy/dx must be >= equi_line_ratio. Note that the conLR tile may not have extra points

on the horizontal tile edges and the ratio dx/dy must be >= equi_line_ratio. Function

doEquiRectangle creates an equi-potential line node in the center of the tile, see example:

conLR
tile

extra vert. point area=1 node

dy

dx

The tiles are classified conTB in function resEnumPair when a horizontal edge crossing

contains on both sides the same high res conductor. And a tile with a high res d/s-area is

also classified conTB by a horizontal edge crossing between gate and d/s-area.

The tiles are classified conLR when a vertical edge crossing contains on both sides the

same high res conductor. And a tile with a high res d/s-area is also classified conLR by a

vertical edge crossing between gate and d/s-area.

The Nelsis IC Design System

articulation reduction 2

What is an equi-potential area node?

When we look in the code and look where function makeAreaNode is called. We see that

function makeAreaNode is called in functions doRectangle and doEquiRectangle and

only is called for low res conductor subnodes. These functions are called by function

triangular . And triangular is called by function resEnumTile , but only if the tile has a

high res conductor. Thus, function triangular is not called for a completely low res

conductor. Tile example:

area=2 node

high res node low res node
points point

Notes about function reducArtDegree

See for an explanation of the min_art_degree and min_degree heuristic also section

2.8.1 of the "Space User’s Manual". The sub-function calc_art_degree is used to make

the code of function reducArtDegree more easy to understand. The code tries to calculate

the art. degree for an area=2 node by breaking the resistance graph in separate pieces. It

uses the node flag to skip non-separate nodes. The function does not take a possible

substrate resistor connection into account.

int calc_art_degree (node_t *n, int cx)

{

degree = 0;

for (con = n -> con[cx]; con; con = NEXT(con, n)) {

on = OTHER(con, n);

on -> flag = 1;

}

for (con = n -> con[cx]; con; con = NEXT(con, n)) {

on = OTHER(con, n);

if (on -> flag) { on -> flag = 0;

++degree;

for (r = on -> con[cx]; r; r = NEXT(r, on)) {

obn = OTHER(r, on);

if (obn -> flag) obn -> flag = 0;

}

}

}

return degree;

}

On the following page you can find the code of function reducArtDegree and some

comments and notes.

The Nelsis IC Design System

articulation reduction 3

int reducArtDegree (node_t **qn, int n_cnt)

{

for (i = 0; i < n_cnt; i++) {

n = qn[i];

if (n -> term > 1) { n -> keep = 1; continue; }

n -> keep = 0;

cx = testRCelim (n);

if (!n -> keep && artReduc && cx >= 0) {

if (n -> area) {

if (n -> area == 1) degree = 2;

else degree = calc_art_degree (n, cx);

if (degree >= min_art_degree || (degree > 1 &&

n -> res_cnt >= min_degree)) n -> keep = 1;

}

else if (n -> term) {

if (min_art_degree <= 1) n -> keep = 1;

}

}

if (!n -> keep && !n -> term) {

elim (n);

qn[i--] = qn[--n_cnt];

}

}

return (n_cnt);

}

Some comments about the code of the above reducArtDegree function. Variable

artReduc can only be true by resistance extraction and is only true if one (or both) of the

parameters min_art_degree or min_degree is >= 0 and less than MAX_INT. Both

parameters are default MAX_INT (a specified value < 0 is changed into MAX_INT).

You see that the value of both parameters can set the node keep flag, thus the node will be

retained in the network. Note that a term node is always retained in the network, but the

keep flag can also be set for a term=1 node (which is not an area node). However, this

shall normally not happen, because min_art_degree <= 1 is normally not used.

Note that the keep flag is only used in function reducMinRes for the min_res heuristic.

Nodes with a set keep flag are not evaluated by function reducMinRes . But function

reducMinRes shall only evaluate nodes with an unset keep flag and that can only be

nodes with term=1 status.

Note that cx >= 0 guarantees that there is a resistor connected to node n. And, because

the keep flag is not set, there is only one resistor type connected to the node. However,

the node res_cnt can be zero, because the resistor can be a substrate resistor. Note that

the substrate resistor is not taken into account when calculating the art. degree. In fact

the test for cx >= 0 is incorrect, because now not always the keep flag can be set for all

area nodes when parameter min_art_degree = 0 is specified.

Note that the use of an art. degree of 2 for area=1 nodes does not follow the specification

of section 2.8.1 in the "Space User’s Manual". It can better be coded like this:

The Nelsis IC Design System

articulation reduction 4

if (n -> area == 1) {

if ((degree = n -> res_cnt) > 2) degree = 2;

}

When the suggested (typical) settings are used, min_art_degree=3 and min_degree=4,

then the keep for area=1 nodes is only depended of the node res_cnt and the choice of

parameter min_degree.

By using a fixed art. degree of 2 for area=1 nodes and using min_art_degree=2, then all

area=1 nodes will be retained in the network and possible also nodes on a dead end

(dangling nodes). See following figure:

dead end?

Note that function calc_art_degree does not compute the real articulation degree. It does

not take interconnect loops into account and does not find an art. degree of 1 for the

following cases:

art.degree=2 ?
2 13

When we have three line nodes (x,y,z), then the order of processing of the nodes decide

of line node ’z’ is eliminated or not. Only when node ’z’ is done after ’x’ and ’y’, it is

eliminated. When node ’y’ is done before ’x’, then the elimination is more complex. We

can add parameter art_reduc_retry to process node ’z’ a second time and to eliminate it.

r=3r=1

A

B

C

r=4

A

B

C

r=3

A

B

C

x y z z

r = res_cnt

The Nelsis IC Design System

articulation reduction 5

When line node ’z’ is done before the other line nodes (and no retry is done), then it is

possible that node ’z’ becomes a dead end (a dangling node). See figure:

r=4

zA

r=3

r=3

r=3

A z

r=1
r = res_cnt

The parameter delete_dangling is added to the code of function reducArtDegree to

eliminate dangling nodes. Note that a dangling line node is also not eliminated when

min_art_degree is <= 2. Thus delete_dangling must overrule the art. parameters.

This gives the following code:

int reducArtDegree (node_t **qn, int n_cnt)

{

for (i = 0; i < n_cnt; i++) {

n = qn[i];

if (n -> term > 1) { n -> keep = 1; continue; }

n -> keep = 0;

cx = testRCelim (n);

if (!n -> keep && artReduc && cx >= 0) {

if (n -> area) {

if (delete_dangling && n -> res_cnt < 2 && !n -> term

&& (n -> substrCon[cx] == 0 || n -> res_cnt == 0)) goto E1;

if (n -> area == 1) degree = 2;

else degree = calc_art_degree (n, cx);

if (degree >= min_art_degree || (degree > 1 &&

n -> res_cnt >= min_degree)) n -> keep = 1;

}

else if (n -> term && min_art_degree <= 1) n -> keep = 1;

}

if (!n -> keep && !n -> term) {

E1: if (delete_dangling && i && n -> res_cnt <= 2) {

for (con = n -> con[cx]; con; con = NEXT(con, n)) {

on = OTHER(con, n);

if (on -> res_cnt <= 2 && !on -> term) {

for (j = 0; j < i && qn[j] != on; ++j);

if (j < i) { qn[i--] = on; qn[j] = qn[i]; }

}

}

}

elim (n); qn[i--] = qn[--n_cnt];

}

}

return (n_cnt);

}

We must look out for cx < 0 in the second delete_dangling test?

The Nelsis IC Design System

articulation reduction 6

The evolution of the reducArtDegree source code

The order problem was no issue in early source code of function reducArtDegree (source

delta 4.10 to 4.14 in 1993). Function reducArtDegree did not yet exist, but was part of

function reducGroupI . See following code part:

if (optRes && (min_art_degree >= 0 || min_degree >= 0)) {

for (i = 0; i < n_cnt; i++) {

n = qn[i];

n -> help = 0; /* the articulation degree */

n -> keep = 0;

cx = testRCelim (n); /* substrCon not tested! */

if (!n -> keep && cx >= 0) {

for (con = n -> con[cx]; con; con = NEXT(con, n)) {

on = OTHER(con, n);

if (!on -> flag) { setBranch (n, on, cx); n -> help += 1; }

}

for (j = 0; j < n_cnt; j++) qn[j] -> flag = 0; /* reset */

}

}

for (i = 0; i < n_cnt; i++) {

n = qn[i];

if (!n -> keep) {

if ((min_art_degree >= 0 && n -> help + 0.5 >= min_art_degree)

|| (n -> help > 1.5 && n -> res_cnt >= min_degree)) n -> keep = 1;

}

if (n -> area && !n -> keep) { elim (n); qn[i--] = qn[--n_cnt]; }

}

}

Note that there are not yet substrate resistors. The flag member of all nodes is initial 0.

Function setBranch sets recursively node flags and counts the number of branches for

node ’n’. Thus, the real articulation degree is computed and stored in the node help

member (a double). This is done in the first for-loop for all the nodes, which don’t need

to be kept. When cx is >= 0, we know that there is a resistor connected to node ’n’ and

that an art. degree for node ’n’ must be computed. And all node flags are reset again.

The second for-loop shall evaluate the computed art. degree of the nodes and can set keep

depended of min_art_degree and/or min_degree parameters. The area nodes with unset

keep flag are eliminated. Note that terminal nodes must not be area nodes.

Note that an area node is always kept when min_art_degree=0.

Starting with revision 4.15 (1993-09-20) the second for-loop is not more used. From that

moment on, the processing order of the nodes become important, because some nodes

may be eliminated during the art. reduction process. See code on next page.

The Nelsis IC Design System

articulation reduction 7

if (optRes && (min_art_degree >= 0 || min_degree >= 0)) { /* >= 4.15 */

for (i = 0; i < n_cnt; i++) {

n = qn[i];

n -> keep = 0;

cx = testRCelim (n); /* substrCon not tested! */

if (n -> area && !n -> keep && cx >= 0) {

n -> help = 0; /* the articulation degree */

for (con = n -> con[cx]; con; con = NEXT(con, n)) {

on = OTHER(con, n);

if (!on -> flag) { setBranch (n, on, cx); n -> help += 1; }

}

for (j = 0; j < n_cnt; j++) qn[j] -> flag = 0; /* reset */

if ((min_art_degree >= 0 && n -> help + 0.5 >= min_art_degree)

|| (n -> help > 1.5 && n -> res_cnt >= min_degree)) n -> keep = 1;

}

if (n -> area && !n -> keep) { elim (n); qn[i--] = qn[--n_cnt]; }

}

}

Note that this version depends on cx and does not always keep an area node when

min_art_degree=0. Note that the node help member needs not more be used for the art.

degree. Revision 4.19 (1993-12-23) adds the test (min_degree >= 0) before (n -> help >

1.5) and removes the test for (n -> area) to compute the art. degree. In that case the art.

degree is also computed for terminal nodes and keep possibly set.

Starting with revision 4.22 (1994-08-05) a separate reducArtDegree function is created.

Now the art. degree is only computed for area nodes, for terminal nodes a degree of 1 is

used. The node term member is used in some tests, but the code is not really different.

Starting with revision 4.28 (1996-08-15) some major changes can be reported. Now area

line nodes are introduced, which have a fixed art. degree of 2. Function setBranch is not

more recursive and also unsetBranch is added to reset the flag node members. Thus, not

more the real articulation degree is computed! Now also substrate extraction code is

added, function testRCelim is now also testing for substrCon/Cap and for junction caps.

Note that function testRCelim is really added in revision 4.29 (1998-02-06).

Starting with revision 4.45 (2004-01-16) the test for term > 1 is added and setting the

keep member. Line area nodes are now changed into area=1 nodes.

Starting with revision 4.54 (2009-06-18) changed n -> help into local degree variable.

Separate articulation degree tests for area and term nodes.

Starting with revision 4.55 (2009-06-28) removed functions setBranch and unsetBranch .

Added the artReduc variable and removed the test for optRes, min_art_degree and

min_degree. No separate code anymore for the not optRes mode.

Starting with revision 4.59 (2010-05-04) removed tests for min_art_degree >= 0 and

min_degree >= 0. In revision 4.62 (2010-12-14) removed the test for n -> substr.

In revision 4.67 (2011-10-27) added delete_dangling code.

The Nelsis IC Design System

articulation reduction 8

How to implement an efficient art_reduc_retry?

We can easy test on the end of the for-loop of some nodes are eliminated and then jump

back and start function reducArtDegree again. A jump back is not needed, if only nodes

on i=0 are eliminated. See following code:

int reducArtDegree (node_t **qn, int n_cnt)

{

begin_art:

retry = 0;

for (i = 0; i < n_cnt; i++) {

n = qn[i];

if (n -> term > 1) { n -> keep = 1; continue; }

n -> keep = 0;

cx = testRCelim (n);

if (!n -> keep && artReduc && cx >= 0) {

if (n -> area) {

if (delete_dangling && ...) goto E1;

...

}

else if (n -> term) {

if (min_art_degree <= 1) n -> keep = 1;

}

}

if (!n -> keep && !n -> term) {

E1: if (i) {

if (art_reduc_retry) retry = 1;

else if (delete_dangling) { ... }

}

elim (n);

qn[i--] = qn[--n_cnt];

}

}

if (retry) goto begin_art;

return (n_cnt);

}

Maybe we don’t need to start over again by i=0, for example when the first nodes in array

qn have the term > 1 status. Possibly we can also swap nodes to the begin of qn?

The Nelsis IC Design System

articulation reduction 9

A more efficient calc_art_degree

The code to compute the art. degree for area=2 nodes can be improved:

if (n -> area == 2) {

degree = calc_art_degree (n, cx);

if (degree >= min_art_degree ||

(degree >= 2 && n -> res_cnt >= min_degree)) {

n -> keep = 1;

continue;

}

}

We can change it into:

if (n -> area == 2) {

degree = calc_art_degree (n, cx);

if (degree < min_art_degree &&

(degree < 2 || n -> res_cnt < min_degree)) goto nokeep;

n -> keep = 1;

continue;

}

And we can change it into:

if (n -> area == 2) {

if (min_art_degree < 2) {

if (n -> res_cnt < min_art_degree) goto nokeep;

}

else {

min = (n -> res_cnt < min_degree) ? min_art_degree : 2;

if (n -> res_cnt < min) goto nokeep;

degree = calc_art_degree (n, cx);

if (degree < min) goto nokeep;

}

n -> keep = 1;

continue;

}

Thus, by a min_art_degree < 2 we don’t need to compute the degree.

By a min_art_degree >= 2 we only need to compute the degree by a res_cnt >= min.

This, because the art. degree is always <= res_cnt.

The Nelsis IC Design System

