
Space SNE reduction

notes

S. de Graaf

Circuits and Systems Group

Faculty of Electrical Engineering,

Mathematics and Computer Science

Delft University of Technology

The Netherlands

Report EWI-ENS 11-05

August 15, 2011

Copyright © 2011 by the author.

All rights reserved.

Last revision: September 27, 2011.

SNE reduction notes 1

1. INTRODUCTION

Selective Node Elimination (SNE) a method for frequency depended network reduction.

The SNE method works only when using the space resistance and capacitance extraction

mode and using the -G option for SNE. Nevertheless you can fool the space extractor by

not specifying capacitances in the technology file or using a high "low_sheet_res" and

"low_contact_res" parameter for resistances. But note, that SNE can only work for nodes

which have both resistors and capacitors.

The SNE method uses default a frequency of 1e9 Hz, which can be changed with

parameter "sne.frequency". Other important parameters are: sne.norm (default 0),

sne.errorfunc (default 0), sne.fullgraph (default 0), sne.tolerance (default 0.05),

sne.resolution (default 1) and moments.max (default 2).

The SNE method works by calculating a weight for delayed1 nodes. Based on the weight

the nodes get higher priority and are not as easy eliminated. Based on the

"sne.resolution", each priority queue degree entry is split in separate sections. When the

weight reaches the "sne.tolerance" value, it is placed in the highest section and can at that

moment not be eliminated. A weight value is default calculated by only evaluating the

grounded branches of the node (because of sne.fullgraph=0) and only the highest value of

one branch is taken (because of sne.norm=0) and only the first extra moment is used

(because of sne.errorfunc=0). Therefor using a higher "moments.max" has no effect and

default SNE can only work with "moments.max=2". Only "sne.norm=3" method has

default "moments.max=0", because moments are not used.

The procedure in the space program works as follows. Each ready node is processed by

function readyNode. When it is the last node of the node group, it is given to function

readyGroup. When it is not the last node and can be delayed, it is given to function

nqDelayElim. Function nqDelayElim places the node in the priority queue by calling

nqInsert. But first the node "degree" is calculated by nqDegree and for SNE the node

"weight" is calculated by updateWeight (node is also flagged as delayed). Function

nqDelayElim counts the number of delayed nodes, when too many nodes are delayed

(parameter max_delayed), then one of the nodes in the priority queue is eliminated.

Normally the value of parameter max_delayed is very large, thus this happens not easy.

More likely a node group becomes completely ready and last node is given to

readyGroup. If possible, this last node is delayed by readyGroup. Now all delayed nodes

of the group are eliminated by function nqEliminateGroup. Each eliminated node

updates the weights of its connected nodes. However, delayed nodes which get enough

weight, are not eliminated. Use parameter "sne.print_elimcount" to see info.

1. Delayed nodes are nodes that can be eliminated. They are placed in a priority queue. Nodes with
lowest degree are first eliminated. Area and terminal nodes are not delayed.

The Nelsis IC Design System

SNE reduction notes 2

2. WEIGHT CALCULATION

The ready delayed nodes get an initial weight, using function updateWeight. Default

(sne.fullgraph=0) only the weight for the grounded branches is calculated and only the

larged weight found (sne.norm=0) is taken. The node must have a grounded branch else

no weight can be calculated. Therefor, the node must have a groundCap or a groundCap

moment value. Using moments.max=2 the following formula are used for the RES (and

CAP) situation:

Mij_[0] = (Gi*Gj) / GS

Mij_[1] = (Ci*Gj + Gi*Cj - Mij_[0]*CS) / GS

Mij_[2] = (Ci*Cj + Mi*Gj + Gi*Mj - Mij_[0]*MS - Mij_[1]*CS) / GS

For RES and only i=0 (Gi=0, Ci=groundCap, Mi=moment) the formula are:

Mij_[0] = 0

Mij_[1] = (Ci*Gj) / GS

Mij_[2] = (Ci*Cj + Mi*Gj - Mij_[1]*CS) / GS

For NORES (the only CAP situation) the following formula are used:

Mij_[0] = 0

Mij_[1] = (Ci*Cj) / CS

Mij_[2] = (Ci*Mj + Mi*Cj - Mij_[1]*MS) / CS

Initial there can’t be moments, thus Mi=0, Mj=0 and MS=0. And there can only be a

branch weight for sne.errorfunc=0, if Mij_[2] != 0. Thus, there is only a branch weight in

the RES/CAP situation with Mij_[2] formula:

Mij_[2] = (Ci*Cj - Mij_[1]*CS) / GS

Mij_[2] = (Ci*Cj - Ci*Gj*CS/GS) / GS

Note that Cj or Gj (Mij_[1]) can be zero (but not both) (Ci, CS and GS are not zero).

For sne.norm=0 and sne.errorfunc=0 the calculated branch weight for branch(j) is:

weight(j) = sneOmega * abs(Mij_[2] / (Mij_[1] + CGj))

weight(j) = sneOmega * abs(Ci*Cj - Mij_[1]*CS) / (GS*(Mij_[1] + CGj))

For CGj=0 branch Gj (Mij_[1]) may not be zero (else weight(j)=0):

weight(j) = sneOmega * abs(Ci*Cj - Mij_[1]*CS) / (GS*Mij_[1])

weight(j) = sneOmega * abs(Cj/Gj - CS/GS)

For Gj=0 branch CGj may not be zero (else weight(j)=0):

weight(j) = sneOmega * abs((Ci*Cj) / (GS*CGj))

For this last situation, a weight update of a node over a coupleCap Cj is only useful, when

both nodes have a groundCap.

The Nelsis IC Design System

SNE reduction notes 3

3. MOMENTS CALCULATION

Extra moments are only calculated by function momentsElim and only when

maxMoments > 1. Function momentsElim is only called by function elim. Variable

maxMoments is default 2 (parameter moments.max=2). This results in the calculation of

1 extra moment. This is for the SNE method enough (for sne.errorfunc < 2). The value

of the extra moment is stored in a capacitor element, if the capacitor is a coupleCap

between two nodes. When the capacitor is a groundCap, than there is no capacitor

element, but the groundCap value is stored in the node. Thus, in that case the extra

moment value is also stored in the node. When the capacitor is a substrateCap, than the

values are also stored in the node.

Extra moments can only exist when one or more nodes are eliminated. When a node

group becomes ready and there are not yet nodes of the group eliminated, then there are

not yet extra moments. However, coupleCap elements which connect the group with

other adjacent ready groups have most likely an extra moments value, because delayed

nodes (if existing) of the adjacent groups are most likely eliminated.

Function momentsElim can only calculate an extra moment if the eliminated node has a

capacitor or a groundCap moment value (but initial a groundCap moment value can not

exist).

For RES (and CAP) the formula are:

Mij_[0] = (Gi*Gj) / GS

Mij_[1] = (Ci*Gj + Gi*Cj - Mij_[0]*CS) / GS

Mij_[2] = (Ci*Cj + Mi*Gj + Gi*Mj - Mij_[0]*MS - Mij_[1]*CS) / GS

For RES (no CAP) the formula are:

Mij_[1] = 0

Mij_[2] = (Mi*Gj + Gi*Mj - Mij_[0]*MS) / GS

For RES and no moments (there must be CAPs else Mij_[2] = 0), formula:

Mij_[2] = (Ci*Cj - Mij_[1]*CS) / GS

For NORES (only CAPs) the formula are:

Mij_[0] = 0

Mij_[1] = (Ci*Cj) / CS

Mij_[2] = (Ci*Mj + Mi*Cj - Mij_[1]*MS) / CS

For NORES and no moments: Mij_[2] = 0.

Thus, the eliminated node must have RES and CAP to calculate an extra moment.

Below is explained what the calculated moments are:

Mij_[0] = the calculated conductance (Gij) component

Mij_[1] = the calculated capacitance (Cij) component

Mij_[2] = the calculated extra moment(Mij) component

The following figure summarize the new component that is added between node i and j.

The Nelsis IC Design System

SNE reduction notes 4

The figure below giv es an overview of the calculated additional component between node

i and j by elimination of node k in a RES/CAP situation. GS is the sum of the

conductances and CS is the sum of the capacitances connected to node k. An extra

moment Mij is calculated in a RES/CAP situation (CS != 0).

i Ci k j

Gij = 0

Cj

Cij = 0

Mij = Ci * Cj / GS

i Gi k jGj

Gij = Gi * Gj / GS

Cij = −Gij * CS / GS

Mij = −Cij * CS / GS

i Gi k j

Gij = 0

Cj

Cij = Gi * Cj / GS

Mij = (Gi * Mj − Cij * CS) / GS

The figure below giv es an overview of the calculated additional component between node

i and j by elimination of node k in a only CAP situation (GS = 0). MS is the sum of the

(extra) moments connected to node k.

i Ci k jCj

Gij = 0

Mij = (Ci*Mj + Mi*Cj − Cij*MS) / CS

Cij = Ci * Cj / CS

Thus a only CAP situation needs a RES/CAP situation, because else no moment Mij can

be calculated.

The figure on the following page gives an example how extra moments are created by

node elimination.

The Nelsis IC Design System

SNE reduction notes 5

The figure below shows a node elimination and the creation of moments.

C1g = G1*Cg/GS

M1g = −C1g*CS/GS

n3

n1

n2

n3

n1

n2

C3

G1

G2

G3

Cg

n0

elim
GS = G1 + G2

CS = C3 + Cg

C1g

C2g

C3g = 0

M13 = −C13*CS/GS

C13 = G1*C3 / GS

M23 = −C23*CS/GS

C23 = G2*C3 / GS

M12 = −C12*CS/GS

G12 = G3 + G1*G2 / GS
C12 = −G12*CS/GS

M1g

M2g M3g = Cg*C3/GS

M3g

When nodes n0, n1 and n2 are in another group than node n3, you see that the elimination

of node n0 has impact on the node n3 of another group. That node gets more coupleCap

elements and gets a groundCap. Note that this groundCap has only an extra moments

value. Thus a grounded branch for n3 is created via a coupleCap to another group.

The Nelsis IC Design System

SNE reduction notes 6

As an example for SNE we shall look to an active area part on the "vss" supply line

which is used for substrate contacts in the "oscil" demo example (see figure 1 below).

CfaCfaCfg Cfg

cmf

"vss"

cca

caa

cmf

cca

caa @gnd@gnd

cmf cmfcmf

@sub

cont_b : cca cmf !cwn !csn : cmf @sub : 80
acap_cmf_sub : cmf !cpg !caa !cwn : cmf @gnd : 25 # Cfg
acap_cmf_caa : cmf !cpg caa !cca : cmf caa : 49 # Cfa

"vss"

The substrate contact "cont_b" (see above) is defined between first metal (cmf) and

substrate (@sub), and layer "cca" is used as the contact mask. Also the active area mask

(caa) is used for the contact, but not in the "cont_b" definition. This active area part is not

connected with the substrate and not connected with "cmf" and not connected with the

touching "caa" d/s area (because it is of another type). And this "caa" part is an isolated

high resistive island. Between the "caa" and "cmf" mask a couple cap is defined (Cfa),

which is different to the couple cap between "cmf" and the substrate or ground @gnd

(Cfg). Note that if the "caa" island is removed, the couple cap definition "acap_cmf_sub"

needs the additional condition "!cca".

When extracting, the space extractor uses a scanline technique and the active area island

is split in 5 tiles. These tiles get nodes on the corners (12 in total) and a resistor mesh

exists between these nodes (see figure 2 on the next page). There is a procedure to

eliminate nodes, at last one is left. The steps are shown in the figure.

Note that each of the 12 nodes has a couple capacitor to "vss" (cmf). Because all 12

nodes are delayed, all nodes of the island are eliminated. Thus, no dangling couple

capacitor of the island is left. By elimination, see the dashed lines, also a couple

capacitor is created between the nodes (parallel to a resistor).

The Nelsis IC Design System

SNE reduction notes 7

Below, figure 2 shows the resistor mesh of 12 nodes and the elimination of 11 nodes.

8

7

e

6

8

7 6

e

7

7 7

8

7 6

7

9 7

e

7

7

9 6

7

9 7

9
e

11

10

9

7

9

9

10

10
e

9

9

9

9

11

11

e

9

9

9

e

9

9

77

7

7

e 5

5

5

e

3

3
e

1

e4
5

65

5

4

54 4 4

6

9

By SNE, the weights of connected delayed nodes are updated, but not for the "vss" node.

Note that the degree of the nodes is also updated. Maybe, for SNE, we can better

use only the resistor count for the node degree (set parameter elim_order=1).

When the nodes of the above mesh are only connected to nodes with couple caps (the

space -rC mode), the weight update of the delayed nodes is for "sne.fullgraph=0" not

succesful. Because these nodes need to have a grounded branch. When the first metal

conductor is high res, then the "vss" node is split in a resistor mesh and a number of

delayed nodes. In that case the couple caps can update the weights of the nodes of the

adjacent "vss" group (succesful, because these nodes have a grounded branch).

Note that not all adjacent group nodes are ready. In function clearTile it is better

first to finish the nodes of a ready node group. This reduce the weight updates for

nodes in the adjacent group. It is also better to update delayed nodes of adjacent

groups only at the end of function readyGroup (and it is maybe not needed to

update the nodes of adjacent groups).

When using the space -rc mode, no coupleCaps are extracted, but only groundCaps. In

that case the island becomes isolated (has no adjacent groups). All the 12 delayed nodes

of the island get a weight, but are all eliminated when no weight reach the sne.tolerance

value. By a sne.frequency=1e13 two nodes reach the sne.tolerance value and are not

eliminated. One of the nodes is, however, eliminated by function reducMinRes (in

The Nelsis IC Design System

SNE reduction notes 8

reducGroupI). Note that function reducArtDegree can’t eliminate the nodes, because of

the "term=1" status and shall normally not set the "keep" status (except when the

art.degree is high and it is an area node). Nodes with "keep" status can’t be eliminated by

function reducMinRes. After reducGroupI, 11 of the 12 nodes of the group are

eliminated. Now, the last node is given to outGroup, which calls outNode to output the

node. However, function outNode shall not output the node, because it has no

connections and also no names (and netEquivalences). But note that the node has the

"term=1" status, but has no terminal or label. You can use the following space command

to see more extraction info:

% space -FGrc -Ssne.print_elimcount -Sdebug.ready_group=1 \

-Ssne.frequency=1e13 oscil

By a sne.frequency of 1e14 Hz 8 nodes reach the sne.tolerance value and are not

eliminated. Five of the nodes are, however, eliminated by function reducMinRes (in

reducGroupI). Thus, 3 nodes are outputted by function outNode. This gives the

following dangling nodes connected with resistors in the resulting network:

network oscil (terminal in, out, vss, vdd, sens)

{

res 145.2163 (1, 3);

res 116.5244 (1, 2);

cap 46.65876e-18 (1, GND);

res 620.1666 (2, 3);

cap 21.6502e-18 (2, GND);

cap 25.77104e-18 (3, GND);

...

By a sne.frequency of 1e15 Hz all nodes reach the sne.tolerance value and are not

eliminated. Eleven nodes are, however, eliminated by function reducMinRes (in

reducGroupI). The last node is given to outGroup, but is not outputted by function

outNode. The following code is responsible for this action:

void outNode (node_t *n)

{

connected = 0;

if (n -> res_cnt > 0) connected = 1;

if (n -> cap_cnt > 0) connected = 1;

if (!connected && !n -> n_n_cnt && n -> term != 2) goto ret;

...

Note that the above code of function outNode is not ok, if the local node contains both a

groundCap and a resistor to substrate. In that case the groundCap must be added between

the substrate and ground node (except when substrate and ground are the same node).

Why giving this detailed node group example of the island of nodes. Well, the

elimination of the island cost some time and by SNE also weights are possible calculated

for these nodes (and cost more time). Conclusion: After evaluation of the nodes in

function readyGroup, we can decide to throw away the complete group, because it is an

isolated group and not important.

The Nelsis IC Design System

SNE reduction notes 9

4. NOTES

The SNE method can maybe not good work while using equi-potential line nodes.

Because these nodes are not delayed and get no weight. Set parameter

"equi_line_ratio=0" or don’t use any heuristic (option -n). On the other hand, it is useful

to have area nodes (big low res nodes), thus you don’t want to put off all heuristics. This

area nodes are more important and are not delayed (have no weight), but have many

connections.

Maybe, in SNE mode, we must not use parameter "max_delayed" and not early eliminate

ready nodes. In that case we only need to update the weight of the delayed nodes of the

ready group. And that can speed-up the SNE extraction.

When extracting resistivity, only in that case there can be node groups and only in that

case there can be delayed nodes. We can only use the SNE method, when there are

delayed nodes.

When a node group becomes ready, we start with a set delayed nodes for SNE. We can

take the set nodes apart and can calculate the initial weights or we must calculate the

weight of a node if the weight of the node is reset. After calculating the weight for a

node, it can be that we first must try to take another node, because of too high weight.

The degree of a node has highest priority for finding a node in the priority queue. When

the degree of the node is changed, the node must be repositioned in the queue. But we

don’t need directly to calculate a new weight value, but we must reset the value to the

reset value (for example -1). A normal weight value is always >= 0. Note that we can

also use zero as the reset value, because we can calculate always a weight value greater

than zero.

The same strategy can be used for too early eliminated nodes. We take always a node

with lowest degree from the queue and first look if a weight needs to be calculated. We

can easy calculate the weight, because the node has normally a very low degree.

Sometimes, we must take another node, because the node weight is too high.

The weight position (posW) of a node is calculated as follows:

if (weight < sneTolerance)

else
 posW = sneResolution

 posW = weight * sneResolution / sneTolerance

posW = 1 posW = 0

sneResolution = 1

0.0

degree >= 0

sneTolerance = 0.05

nqSizeW = 2

[1] [0]

The Nelsis IC Design System

SNE reduction notes 10

5. PROCEDURE SCHEME

This scheme gives an overview of the functions called by the space program. After

function enumTile, function clearTile is called. This can be much later in the process if a

band-width is used. Function clearTile shall delete the subnodes of the tile. By

resistance extraction, these subnodes are in the node-points. A node can become ready,

because of this subnode delete action. A node can be delayed, if no special flags are set.

The last node of the group goes directly to function readyGroup. But also readyGroup

can delay this last node. This last node cannot give a overflow of the priority queue.

subnodeDel (sn)

readyNode (n)

if (grp−>notReady == 0)

else if (!n−>term && !n−>keep

readyGroup (n)

if (!n−>subs)

readyGroup (n)

findGroup (n)

nqDelayNode (n) ?

nqEliminateGroup (qn)

reducGroupI (qn)

outGroup (qn)

nqDelayElim (n)

nqDelayElim (n)

nqDelayNode (n)

elim (n)

nqSetDegree (n)

nqDelete (n)

nqDelayNode (n)

nqSetDegree (on)
if (sne) momentsElim (n)

momentsWeight (n)

clearTile (tile)

&& !n−>area)

if (delayCount > maxDelayed)

if (adj.ready)

if (sne) updateWeight (n)

nqInsert (n)
nqDegree (n)

nqDelayNode (n)

Function findGroup places the nodes of the group in array qn. After function

nqEliminateGroup there are not more delayed nodes in array qn. Thus, all delayed nodes

are removed from the priority queue and possibly eliminated. Note that the eliminated

node is not more in the priority queue.

The Nelsis IC Design System

SNE reduction notes 11

6. DELAYED NODES

A node group needs delayed nodes in a priority queue, because of making a choice in

which order they must be eliminated. A Markowitz scheme is used for this priority

queue. But also in case of too many delayed nodes it is useful to eliminate a low priority

node of a group. Note that there are only node groups in the res. extraction mode. Thus,

delayed2 nodes have normally always neighbor nodes and resistors. Thus, a weight

update or degree calculation is normally always done for a node with resistors. However,

there are two situations whereby the delayed node does not have resistors.

Case 1: The node is the only node of the node group, because it is a complete low res

conductor and it has also no high res contacts. This node is given to function readyGroup

as the last node of the node group. Because the node has no special flags, readyGroup

shall delay the node. The node can have many capacitors, is possibly be connected to the

ground node or to many other adjacent groups. The degree can be calculated and this

degree can be high. And in case of SNE the weight can also be calculated. It is placed

(nqInsert) in the priority queue, but is this really needed? After that it must be find back

and only in case of SNE there may be a reason not to eliminate this node. And this cost

ev en more time to find it back, because it is in the highest queue at the degree position.

Thus, only in case of SNE it might be, that we don’t want to eliminate this node. Note

that normally in the res. extraction mode this node was an area node, but because of

putting off the articulation heuristic it is not special. But normally it is an area node and

is not delayed, but it is by reducArtDegree always eliminated because it has no resistors.

Note that, when the res. extraction mode is not used, the node is not flagged as area node.

In that case there are only single group nodes and these nodes (if not special) are also

delayed, but are the only node in the priority queue. And are directly removed from the

queue again.

Case 2: The node is the only node of the node group, because all nodes of the group are

delayed and all other nodes are already eliminated. This last node is updated by function

nqSetDegree and is only not eliminated in case of SNE, if the weight becomes high

enough. Without SNE, it is maybe possible to implement a faster eliminate of the total

group. With SNE, it can also be possible that no nodes have a weight, because no nodes

have a ground capacitance.

2. A delayed node is normally not the last node of a node group. Therefor a delayed node has resistors.
But also the last node of the group can be delayed by readyGroup itself. And if it is the only node of
the group, it does not need to have resistors. It can have substrate resistors to other groups.

The Nelsis IC Design System

SNE reduction notes 12

7. WEIGHT NOTES

Weight calculation scheme:

cx < 0 cx = 0sumC = 0 sumC != 0

sumM != 0 i0 = 0
only RES RES / CAP

only CAP
rx < 0

sumG = 0

rx >= 0
sumG != 0

In the only RES situation, there are no capacitors connected to the node, there is only a

weight when the node has extra moments with a value not equal zero (and i0 = 0).

For sne.fullgraph=2 (all branches) it is also possible that the node has only extra

moments2 (to substrate node). This special case is not implemented.

Only by substrate extraction, when a substrate node may be eliminated (parameter

"elim_sub_term_node"), only in that case a substrate capacitance value can be

moved over a capacitive branch to another node. In that case only an extra

moments2 value can exist. When in that case also the capacitive branch is

removed from that node, it is possible that the only RES situation is created.

However, because another cap-type is used for substrate caps it is not possible.

Note that in the only RES situation, for the default case (sne.fullgraph=0 (only ground

branches) and sne.errorfunc=0), only a weight != 0 for a branch can be calculated when

the branch node has a gndCap value != 0. For the other situations, only a gndCap for

nodeK (node of weight calculation) is also ok.

Note that only cap-type (cx=0) node capacitances are taken into account. Other cap-

types, used for junction and substrate capacitances, are not used. The extra moments of a

node can also only be for one cap-type (cx=0).

E1 n1

n2

nodeK

m0 = G + G
m1 = C + C
m2 = M

E2

weight(1,2) =
abs (m2 * O^2)

sqrt (m0^2 + m1^2 * O^2)

old

old

shunt

shunt

shunt

The shunt values between n1 and n2, are the added values when nodeK is eliminated.

The branch weight(1,2) is the added moment (m2) divided by cap and res parts.

The old values are the existing admittance values between n1 and n2.

The old moment is default (sne.errorfunc=0) not used.

The Nelsis IC Design System

SNE reduction notes 13

The formules for the shunt values are:

Gshunt = (G1*G2) / GS

Cshunt = (C1*G2 + G1*C2 - Gshunt*CS) / GS

Mshunt = (M1*G2 + C1*C2 + G1*M2 - Cshunt*CS - Gshunt*MS) / GS

Note that these formules are symmetric, you can interchange n1 and n2. The GS, CS and

MS values are the sum-values of respectively all G’s, C’s and M’s connected to nodeK.

When we calculate only the weights for the ground branches (default case) and n1 is the

ground node, then is G1=0 and in that case the formules are:

Cshunt = (C1*G2) / GS Gshunt = 0

Mshunt = (M1*G2 + C1*C2 - Cshunt*CS) / GS

Note that also Gold=0, thus m0=0, and the formule for the branch weight is:

weight(1,2) = Omega * abs (m2) / abs (m1)

weight(1,2) = Omega * abs (Mshunt) / abs (Cold + Cshunt)

nodeK

weight(1,2) =

E1 n1 = nGND

sqrt (m1^2 * O^2)

abs (m2 * O^2)

E2

n2

m0 = 0
m1 = C + C

shunt

shunt

C

m2 = M
old

old

Thus, for ground branches, there is only a branch weight when Mshunt != 0 and

Cold+Cshunt != 0. When element E2 is a resistor (G2 != 0 and Cshunt != 0 and CS != 0),

this is the case. However, when element E2 is a capacitor (G2=0 and Cshunt=0), then

Cold must be != 0. However, when there are only capacitors connected to nodeK, then

the formules are (also symmetric):

Cshunt = (C1*C2) / CS

Mshunt = (C1*M2 + M1*C2 - Cshunt*MS) / CS

In this case Cshunt != 0, but there must be moments (MS != 0), else Mshunt=0.

What happens if C1=0 and M1 != 0? Well, in that case Cshunt=0 and Cold must be != 0.

But note, when in a RES environment element E2 is a capacitor (G2=0), then the

capacitive branch cannot have a weight (because Mshunt=0). Resumé:

C2

G2G2 C2

M1 M1

M1

C1

C1

G2 G2C2 C2

only RES RES / CAP

only CAP

Cold != 0

or

!MS MS

don’t care

don’t care Cold != 0

Cold != 0 Cold != 0

The Nelsis IC Design System

SNE reduction notes 14

The number of branch weight calculations for nodeK:

w0,1 w0,2 w0,3

w1,2 w1,3

w2,3

3

2

1

0

0 1 2 3
j

i

ground branches: (N−1)

all branches: N/2 * (N−1)

N = 4

For the ground branches, only the weights for i=0 are calculated (for N=4 : 3). When the

weights for all branches are calculated, then 6 values for N=4. For example nodeK is

connected with 3 neighbor nodes and has a ground connection (cap-value or moment-

value) to the ground node (n0):

nodeK

n3

n2

n1

n0

nodeK

n3

n2

n1

n0
ground branches all branches

The resulting weight of nodeK is default the square-root of the biggest calculated weight,

but below are all possibilities given:

sne.norm=0: weight-nodeK = sqrt(Max(w1,w2,...))

sne.norm=1: weight-nodeK = sqrt(w1) + sqrt(w2) + ...

sne.norm=2: weight-nodeK = sqrt(w1 + w2 + ...)

Note:

Ground branches are branches to node GND and not to the substrate node SUBSTR.

The Nelsis IC Design System

SNE reduction notes 15

8. DEFAULT WEIGHT CALCULATION

Using the default SNE parameters (sne.fullgraph, sne.errorfunc, sne.norm), it is maybe

possible to choice the best branch weight without all calculations. The formules are:

=== RES === | === CAP ===

Csh = (Ci*Gj) / GS | Csh = (Ci*Cj) / CS

Msh = (Mi*Gj + Ci*Cj - Csh*CS) / GS | Msh = (Ci*Mj + Mi*Cj - Csh*MS) / CS

weight = Omega * abs (Msh / (Cold + Csh))

In the special case Ci=0 (Csh=0) we get the following weight formules (see figure):

nodeK nj

GND

Ci=0
Mi Cold(j)weight(j)

j=1,2,..
Gj / Cj

n0 GND

RES: weight = Omega * abs ((Mi*Gj) / (Cold*GS))

CAP: weight = Omega * abs ((Mi*Cj) / (Cold*CS))

In this case Cold must be != 0 (else no weight). This can also be the only RES situation.

For a RES situation the weight is depended of Gj/Cold (undepended of Cj). For a only

CAP situation the weight is depended of Cj/Cold (undepended of Mj).

For the general RES situation (Ci != 0) the formules for the weight are:

Gj: weight = Omega * abs ((Mi/Ci + Cj/Gj - CS/GS) / (Cold/Csh + 1))

!Gj: weight = Omega * abs ((Ci*Cj) / (Cold*GS))

For a capacitive branch (!Gj) the value of Cold must be != 0 (else no weight). For a

resistive branch (Gj) the value of Cold may be 0, in that case the weight is depended of

Cj/Gj. Note that, if Cj=0, the weight is undepended of Gj. But in general the weight is

depended of:

abs ((X + Cj/Gj) / (Y*Cold/Gj + 1)) # X = Mi/Ci - CS/GS; Y = GS/Ci

For the general only CAP situation (Ci != 0) the formules for the weight are:

Cj: weight = Omega * abs ((Mi/Ci + Mj/Cj - MS/CS) / (Cold/Csh + 1))

!Cj: weight = Omega * abs ((Ci*Mj) / (Cold*CS))

In general the value of Cold may be 0, in that case the weight is depended of Mj/Cj. Note

that in that case, if Mj=0, the weight is undepended of Cj. In case Cj=0 there must be a

Mj and Cold must be != 0 (else no weight). But in general the weight is depended of:

abs ((X + Mj/Cj) / (Y*Cold/Cj + 1)) # X = Mi/Ci - MS/CS; Y = CS/Ci

The Nelsis IC Design System

SNE reduction notes 16

9. NODE PRIORITY

In a node group, there can be nodes with a weight and nodes without a weight. When the

weight values are lower than sneTolerance there is no difference between nodes with and

without a weight (see figure).

3421 3

33

w

w w w

w
w

3

gnd

Thus it is possible that nodes with a weight are first eliminated and that makes nodes

without a weight possibly more important (giving it a weight). Note that a ground

capacitor is also not counted for the degree. Therefor it is maybe better to add an extra

priority queue position for a weight > 0 as follows:

degree

nqSizeW = 3

[2] [1] [0]

enough weight less weight no weight

w = 0w > 0w >= sneTol.

Thus we can first eliminate the nodes without a weight.

This happens also by a nwell area:

3421 3

33

w w

nwellgnd gnd 3

w

The Nelsis IC Design System

SNE reduction notes 17

What, if the nwell area is not connected with a contact to interconnect?

331 3

33

w

nwellgnd 2

w 3

2

CC C C

After elimination of two nwell nodes:

331 3

33

w

gnd

w 3

C/M C/MC C

nwell

After elimination of for last nwell node:

441 3

4

w

gnd

w 3

C/M C/MC/M C

nwell

M

The resistor gets a moment, this is a capacitor element without cap value. The nwell

group contains now only one node, with only capacitors connected. It is maybe not a

good idea to eliminate this last nwell node. After elimination we get:

551

w

gnd

w 5

C/M C/MC/M

C/M

C/M

C/M

5

If we don’t eliminate the nwell node, there can be many moments parallel to the

interconnect resistors. Note that if we make the nwell area low res, then we don’t hav e

these moments. However, if we eliminate the nwell node, there can be many capacitors

parallel to the interconnect resistors.

The Nelsis IC Design System

SNE reduction notes 18

10. RC EXAMPLE

In the figure below you see the layout of a simple RC design example (cell RCshort).

a

b

cpg
cpg / cmf

3 3 3 3 3 3 33

3 3 3 3 3 3 3 32

5

cmf
5 5

55 5

55

2 4 3

4

2

cpg

cpg

1000,50

4

The R-part is made with the poly-silicon mask (cpg) and has one terminal point "a". The

C-part is between mask cpg and the first metal mask (cmf). The cmf mask is low ohmic

and has one terminal "b". Thus the metal group has only one node and the poly group

has 32 nodes. By a normal resistance extraction (option -r) and not using parameter

"equi_line_ratio" the above triangular resistance mesh is used and there are 31 delayed

nodes in the poly group (the numbers by the nodes are the default initial degree).

Note that each poly node has a ground capacitor, this couple cap is not counted for

the node degree. Four poly nodes have a couple cap with the metal conductor, this

cap is counted for the node degree.

The following circuit is extracted after the elimination of the delayed nodes:

% space -E space.MTB2.t -P space.MTB.p -Ssne.frequency=1e6 -rCG RCshort

% xsls RCshort

network RCshort (terminal b, a)

{

cap 3.96725f (b, a);

cap 2.498938f (b, GND);

cap 14.12513f (a, GND);

}

When we chose a higher frequency, first one of the delayed nodes shall get enough

weight to be kept in the network. This node depends of the order of elimination. First

the lowest degree nodes are eliminated (degree of 2). On the end the node on coordinate

position 1000,50 stays in the network. That looks a good choice, because in that case we

get a ‘‘good’’ resistor value. See the extracted circuit on next page (node 1 is the node on

coordinate position 1000,50). However, when we change the layout a little (cell

RCshort2), we get another node that is kept (on position 650,1800).

The Nelsis IC Design System

SNE reduction notes 19

% space -E space.MTB2.t -P space.MTB.p -Ssne.frequency=1e7 -rCG RCshort

% xsls RCshort

network RCshort (terminal b, a)

{

cap 319.5513e-21 (b, a);

cap 3.96693f (b, 1);

cap 2.498938f (b, GND);

res 5.682549k (a, 1);

cap -1.544651f (a, 1);

cap 4.873224f (a, GND);

cap 9.251901f (1, GND);

}

a

b

cpg
cpg / cmf

3 3 3 3 3 3 33

3 3 3 3 3 3 3 52

cmf
5 5

55 5

55

2 5 3

3

cpg

1000,50

650,1800

5

% space -E space.MTB2.t -P space.MTB.p -Ssne.frequency=6e7 -rCG RCshort2

% xsls RCshort2

network RCshort2 (terminal b, a)

{

cap -10.43673e-18 (b, a);

cap 3.739812f (b, 1);

cap 2.937313f (b, GND);

res 1.408717k (a, 1);

cap 59.20282e-18 (a, 1);

cap 1.148447f (a, GND);

cap 12.95068f (1, GND);

}

Node 1 is the node on coordinate position 650,1800. We see, that it is not a good choice,

because we get a ‘‘small’’ resistor value. Note that also the capacitance value between

node 1 and "b" looks too small. We also must use a little bit higher frequency to keep one

node.

What happens if we use parameter "equi_line_ratio=1.0" for this layout? See the figure

on the next page, we get 4 extra line nodes which are not delayed. These line nodes

separate the delayed nodes from each other and therefor they get smaller weights.

The Nelsis IC Design System

SNE reduction notes 20

a

b

cpg
cpg / cmf

3 3 3 3 3 3 33

3 3 3 3 3 3 3 52

cmf
5 5

55 5

55

2 5 3

3

cpg

5

1000,50

1050,0

Because the line nodes separate the delayed nodes, a much higher frequency is needed to

keep one of the delayed nodes. See the extraction and the resulting network below:

% space -E space.MTB2.t -P space.MTB.p -Ssne.frequency=1e10 -rCG RCshort2

% xsls RCshort2

network RCshort2 (terminal b, a)

{

cap 998.8494e-21 (b, a);

cap 3.728376f (b, 1);

cap 2.937313f (b, GND);

res 5.685341k (a, 1);

cap -1.547329f (a, 1);

cap 4.876754f (a, GND);

cap 9.222371f (1, GND);

}

Node 1 is the node on coordinate position 1050,0 and is a good choice. Note that the line

nodes are eliminated in the art. reduction step, because the resulting "res_cnt" on these

nodes is lower than "min_degree". Note that no weight is calculated for the line nodes,

because they are not delayed. For the other layout RCshort we get:

% space -E space.MTB2.t -P space.MTB.p -Ssne.frequency=1e9 -rCG RCshort

% xsls RCshort

network RCshort (terminal b, a)

{

cap 375.8627e-21 (b, a);

cap 3.966874f (b, 1);

cap 2.498938f (b, GND);

res 5.68188k (a, 1);

cap -1.54472f (a, 1);

cap 4.872886f (a, GND);

cap 9.252239f (1, GND);

}

Node 1 is the node on coordinate position 1000,50 and is a ‘‘good’’ choice.

The Nelsis IC Design System

SNE reduction notes 21

By a resistance extraction with option -z (mesh refinement) and also using parameter

"equi_line_ratio", we get another mesh and more line nodes:

a

b

cpg
cpg / cmf

cmf

4

3

cpg

3

33 4 4 44 33

2 3 3 2 2 3 3 2

2 2 3 3 2 2 3 3

4434 3

2 4

5 4

4 3

1000,50

The extraction result for RCshort2 is (node 1 is 1000,50):

% space -E space.MTB2.t -P space.MTB.p -Ssne.frequency=1e10 -rCG RCshort2

% xsls RCshort2

network RCshort2 (terminal b, a)

{

cap 348.8009e-21 (b, a);

cap 3.729026f (b, 1);

cap 2.937313f (b, GND);

res 5.848502k (a, 1);

cap -1.547296f (a, 1);

cap 4.886612f (a, GND);

cap 9.212513f (1, GND);

}

The extraction result for RCshort is (node 1 is 1000,50):

% space -E space.MTB2.t -P space.MTB.p -Ssne.frequency=1e9 -rCG RCshort

% xsls RCshort

network RCshort (terminal b, a)

{

cap 365.1545e-21 (b, a);

cap 3.966885f (b, 1);

cap 2.498938f (b, GND);

res 5.848502k (a, 1);

cap -1.547314f (a, 1);

cap 4.886614f (a, GND);

cap 9.238511f (1, GND);

}

Note that again RCshort2 has less couple capacitance between node 1 and node "b".

We must conclude that the use of line nodes have a good effect on SNE extraction.

The Nelsis IC Design System

