
Using Space

Resistance and Capacitance

Extraction Filters

S. de Graaf

Circuits and Systems Group

Faculty of Electrical Engineering,

Mathematics and Computer Science

Delft University of Technology

The Netherlands

Report EWI-ENS 14-02

Feb. 27, 2014

Copyright © 2014 by the author.

All rights reserved.

Last revision: Feb. 28, 2014.

Resistance and Capacitance Filters 1

1. INTRODUCTION

When requested with option -r, the space layout to circuit extractor extracts resistances

for all high resistive conductors in the layout. Note that parameter "low_sheet_res",

default 1 ohm, controls which conductors are low/high resistive. Note that parameter

"low_sheet_res" is forced to 0 ohm, when requesting an extraction with all conductors

being high resistive (if not zero) with option -%R.

When we look into the technology file of the "scmos_n" example process, we can find the

following resistivities for the conductors:

conductors :

name : condition : mask : resistivity : type

cond_mf : cmf : cmf : 0.045 : m # first metal

cond_ms : cms : cms : 0.030 : m # second metal

cond_pg : cpg : cpg : 40 : m # poly interconnect

cond_pa : caa !cpg !csn : caa : 70 : p # p+ active area

cond_na : caa !cpg csn : caa : 50 : n # n+ active area

cond_well : cwn : cwn : 0 : n # n well

Thus, when we do a flat resistance extraction of for example the "switchbox4" demo

layout, we normally extract only resistances for the "cpg" and "caa" masks (if the given

condition is matched). Note that "caa" represents the active (drain / source) areas of the

"nenh" and "penh" fets. And that "cpg" represents the poly gate and interconnect areas.

The following command is normally used to run a resistance extraction:

% space -Fr switchbox4

The following command can be used to run an all resistance extraction:

% space -%FR switchbox4

However, it is equal to the following resistance extraction command:

% space -Fr -Slow_sheet_res=0 switchbox4

In the last case we extract also resistances for the "cmf" and "cms" masks (the metal

interconnect). However, when we don’t want to extract resistance for example for all

"cpg", then we must change the condition for the "cpg" conductor. For example, we can

use the "cx" filter mask to split out the condition:

cond_pg : cpg !cx : cpg : 40 : m # poly interconnect

cond_pgx: cpg cx : cpg : 0 : m # poly gate

But now, with a filter, we can also get the above result with following clause:

filters : # masks1 : masks2 : fmask : type

r_cpg : cpg : : cx : r

However, the filter becomes only active, when following command is given:

% space -Fr -Senable_filter=r_cpg switchbox4

The Nelsis IC Design System

Resistance and Capacitance Filters 2

Thus, you don’t need to split the condition of the "cond_pg" conductor element.

When there is also a "r_caa" filter, which must be enabled, you can give the command:

% space -Fr -Senable_filter=r_cpg,r_caa switchbox4

However, you can keep it sort, by using wildcards. For example:

% space -Fr -Senable_filter=r* switchbox4

Note however, when giving this command directly to a command shell, you must escape

the wildcard character. You can use a backslash before the ’*’ character or you can place

the part between single quotation marks:

% space -Fr -Senable_filter=’r*’ switchbox4

Other wildcard possibilities are brackets and question marks. A question mark and the

brackets match one character on a string position. Thus, if you have for example 3 filters

called "filter1", "filter2" and "filter3". You can select all filters with:

% space -Fr -Senable_filter=’*’ switchbox4

% space -Fr -Senable_filter=’filter?’ switchbox4

% space -Fr -Senable_filter=’filter[1-3]’ switchbox4

When you want to select only filters "filter1" and "filter3", you can specify:

% space -Fr -Senable_filter=’filter[13]’ switchbox4

More about the technology file filters section.

First you must know that the filters section must be placed after the conductors section.

You can specify filters for conductors, to force the resistivity value to be zero, when the

filter mask is enabled and is laying over the conductor in the layout. When in the

conductor filter specification "masks2" is specified, then the contacts between "masks1"

and "masks2" are also filtered. For example, mask "cpg" can only have a contact with

mask "cmf". When you also want to filter these contacts, you need to specify:

filters : # masks1 : masks2 : fmask : type

r_cpg : cpg : cmf : cx : r

Note that this specification does not filter the "cmf" mask. Because the "masks2" part is

for resistance filters only used for contacts. The "masks2" part can contain "@sub", but

not "@gnd", because there don’t exist contacts with ground "@gnd". For example

filters : # masks1 : masks2 : fmask : type

r_cpg : cpg cmf : cmf @sub : cx : r

shall filter the masks "cpg" and "cmf" and also the contacts between "cpg"/"cmf" and

between "cmf"/"@sub" and (if possible) between "cpg"/"@sub". Note that this

specification can also be specified with two separate filters (using different filter names),

but by using the same filter mask "cx".

The Nelsis IC Design System

Resistance and Capacitance Filters 3

2. CAPACITANCE FILTERS

First, when requested with option -C, the space layout to circuit extractor shall extract

edge and surface couple capacitances for the layout masks. And, when using option -l,

shall also extract lateral couple capacitances. Of course the capacitances need to be

specified in the "capacitances" section of the used technology file.

The following command is normally used to run a capacitance extraction:

% space -FC switchbox4

When you want to use a capacitance filter, for example "c_cpg", you must enable it by

specifying the parameter "enable_filter". For example:

% space -FC -Senable_filter=c_cpg switchbox4

With a capacitance filter you can filter out certain capacitances. The capacitance filter

must be placed in the used technology file after the "conductors" section. For example:

filters : # masks1 : masks2 : fmask : type

c_cpg : cpg : cpg @gnd @sub : cx : c

Because a capacitance has always two pins, both the "masks1" and "masks2" parts need

to be specified. Of course, the specified masks need to be conductor masks. Only the

"masks2" part may contain also "@gnd" and/or "@sub". The above filter shall filter out

edge and surface capacitances between "cpg"/"@gnd" and "cpg"/"@sub" and (if possible)

also filter out lateral capacitances between "cpg"/"cpg".

More about 3D capacitance extraction.

The above filter works also for 3D capacitance extraction. Normally the "capacitances"

section of the used technology file is in this case not more used. But a "vdimensions"

section for the to use conductor masks needs to be specified and also a "dielectrics"

section. To do the 3D capacitance extraction, you need to use the 3D version of the

layout to circuit extractor. For example, with filter, use the following command:

% space3d -C3 -Senable_filter=c_cpg switchbox4

Note that the "flat" extraction option -F does not need to be specified, because a 3D

extraction needs always to be flat (except when parameter "allow_hierarchical_cap3d" is

specified). When also a resistance extraction must be done (with filters), run for example

the following command:

% space3d -C3r -Senable_filter=’c*,r*’ switchbox4

Or, when all filters must be used, the following command:

% space3d -C3r -Senable_filter=’*’ switchbox4

Note that you can always use this command, also when there are resistance filters and

resistance extraction is not used. Because, in that case the resistance filters are skipped.

The Nelsis IC Design System

Resistance and Capacitance Filters 4

3. IMPLEMENTATION

Function "readTechFile" shall read the used technology file and shall try to read the filter

section when "optCap" or "optIntRes" is specified. On forehand, a list of filter data

structures in allocated (with maximum possible count). Parameter "enable_filter" is read

and only the to use filters are installed in the list. First, if needed, the capacitance filters

are read. The number of found capacitance filters is counted with "nrCapFilters". Note

that only the first 60 capacitance filters may contain "@gnd" and/or "@sub", because

bitmasks "gndFilters(2)" and "subFilters(2)" are used for registration. Note that only the

first 32 resistance filters may contain "@sub", because a bitmask "rsubFilter" is used for

the registration. The number of resistance filters is counted with "nrResFilters". Pointer

"cap_filter" points to the first capacitance filter in the filter-list. Pointer "res_filter" points

to the first resistance filter in the filter-list. The pointer is NULL, when there is no cap/res

filter. Each layout mask has a unique mask color bit. The color bits of all cap filter

masks are saved in "cap_filter_masks" and for the res filter masks in "res_filter_masks".

For capacitance extract, the color of a tile is tested against the "cap_filter_masks", but

only when "cap_filter" is set. The used conductors are saved in bitmasks "con1", "con2"

and "con". Note that "con" contains "con1 | con2". Thus, only the first 32 conductors can

be used for the filters. For the capacitance filters, not more than 32 different filter masks

may be used. Variable "nrCapFilterMasks" counts the used number. Two arrays are

used, to save info about the capacitance filter masks. Array "fmConBM" contains for

each filter mask a bitmask of the used "con". Array "fmColor" contains for each filter

mask the used mask color.

In function "enumPair" in a new tile the "HasCapFilter" bit is set in the "known" field,

when "cap_filter_masks" is present in the tile "color". In function "updateEdgeCap" and

other functions, macro "HasCapFilter" is used to check the tile "known" field, if true

function "filterThisCap" is called for the capacitor conductor pins to do a more accurate

test if this capacitor must be skipped.

if (HasCapFilter(tile) && filterThisCap(tile,cap->pCon,cap->nCon)) continue;

Also, in function "resEnumPair" (if res is present) in a new tile the "HasResFilter" bit is

set in the "known" field, when "res_filter_masks" is present in the tile "color". Later on,

in function "connectPoints" the macro "HasResFilter" is used for high res conductors to

filter them out by not setting the subnode highres flag to 1. Note that "psn" is a subnode

in the "otherTile" and is not a subnode of a node point.

j = 1;

if (optPrick) { /* test for selective res */ }

if (j && HasResFilter(otherTile) && filterThisRes(otherTile,i,-1)) j = 0;

if (j) { psn -> highres = 1; SET_KNOW1(otherTile); }

else { psn -> highres = 2; }

Note that function "filterThisRes" is also used in function "resEnumTile" to possible filter

out contacts (by changing the value into 0) between two conductors.

The Nelsis IC Design System

Resistance and Capacitance Filters 5

Here follows a part of the code of function "filterThisCap":

for (i = 0; i < nrCapFilters; ++i) {

if (COLOR_ABSENT (tile -> color, cap_filter[i].mask)) continue;

if (cap_filter[i].con1 & (1 << c1)) {

if (c2 < 0) {

if (i < 28) {

if (c2 == -1) { if (gndFilters & (1 << i)) return 1; }

else if (subFilters & (1 << i)) return 1;

} else if (i < 60) {

if (c2 == -1) { if (gndFilter2 & (1 << (i-28))) return 1; }

else if (subFilter2 & (1 << (i-28))) return 1;

} else return 0;

}

else if (cap_filter[i].con2 & (1 << c2)) return 1;

}

if (c2 >= 0 && (cap_filter[i].con1 & (1 << c2)))

if (cap_filter[i].con2 & (1 << c1)) return 1;

}

return 0;

In function "resEnumTile" is only resistance extract done for conductors when the tile has

more than one node point (pTRb != pTR). This indicate, that there is at least one

conductor with high resistivity. The resistive conductors are done in function

"triangular", we make a sort array of these conductors by using "lastA" and "conNums".

Here a small part of the code used:

pTR = tile -> rbPoints;

pTRb = tile -> tlPoints;

if ((split = (pTRb != pTR))) { /* high res tile */

lastA = 0;

for (con = 0; con < nrOfConductors; ++con)

if ((sn = tile -> cons[con])) {

sn1 = pTR -> cons[con];

sn2 = pTRb -> cons[con];

subnodeJoin (sn1, sn2);

if (sn -> highres == 1) { /* HIGH_RES */

conNums[lastA++] = con;

conVal[con] = sn -> cond -> val;

conSort[con] = sn -> cond -> sortNr;

} else { /* LOW_RES */

for(p = pTRb->next; p; p = p->next) subnodeJoin(sn1,p->cons[con]);

for(p = pTR ->next; p; p = p->next) subnodeJoin(sn1,p->cons[con]);

makeAreaNode (sn1);

}

}

ASSERT(lastA > 0);

triangular (tile);

}

From above code, you see, that the subnodes of the last two points must be joined

together. And you see, that the tile can contain low resistive conductors, which node

points must be joined together.

The Nelsis IC Design System

Resistance and Capacitance Filters 6

4. IMPLEMENTATION FOR 3D CAP

Function "spiderPair" is called by function "enumPair" or "resEnumPair". There is a left

tile "tile_l" and a right tile "tile_r", both tiles are checked for "HasCapFilter". If true,

there is made a list of filter masks, see code part for "tile_l":

if (HasCapFilter (tile_l)) /* which filtermasks are in tile_l */

for (i = 0; i < nrCapFilterMasks; ++i)

if (!COLOR_ABSENT (tile_l->color, fmColor[i])) nF_l[nFilters_l++] = i;

Now, for each mesh conductor (< 32) we find in "tile_l" or "tile_r", we make a filter

bitmap. Note "filter1" for "tile_l" and "filter2" for "tile_r", see code part for "tile_l":

filter1 = filter2 = isGate = isGat2 = 0;

con = 1 << conductor;

if (nFilters_l && m -> solid_l)

for (j = 0; j < nFilters_l; ++j)

if (fmConBM[nF_l[j]] & con) filter1 |= (1 << nF_l[j]);

After that, we test if a filter is found in "tile_l" or "tile_r" and set the "isGate" and

"isGat2" bitmask. A special bit (28) in "isGate" is used to flag cap-filter existance. Note

that bit 30 is used to flag a diffusion conductor and bit 31 to flag a gate conductor. See

following code fragment:

if (filter1 || filter2) { /* cap filter found in (tile_l || tile_r) */

filter12 = filter1 | filter2;

for (j = 0; j < nrCapFilters; ++j)

if (filter12 & (1 << cap_filter[j].nr)) {

if (cap_filter[j].con & con) { /* conductor found in filter j */

if (j < 28) isGate |= (1 << j); else isGat2 |= (1 << (j - 28));

}

}

if (isGate || isGat2) isGate |= 1 << 28;

}

For each new created conductor spider "isGate" and "isGat2" is set, see the functions

"spiderFindNew" and "spiderNew":

spiderFindNew (tile_t *tile, ..., int level, int conductor, ...)

{

if (!sp1) sp1 = spiderNew (x1, y1, z, conductor, tile);

else if (isGate) sp1 -> isGate |= isGate;

sp1 -> isGat2 |= isGat2;

...

}

Note that the global variable "filter" is used in function "tryFace" and "spiderFindFace" to

set the "filter" field in a new face. But first, variable "filter" is set to "filter1" or "filter2".

In function "meshRefine", in the called "reconstructFace" functions, the face "filter" and

"type" fields are used for the face split and merge operations. Note that only faces with

the same "type" and "filter" fields may be merged.

The Nelsis IC Design System

Resistance and Capacitance Filters 7

At last "addCap", this function does use the functions "extractGnd" and "extractCoup" to

decide of the calculated capacitance value "val" may be added by function "capAdd".

See the following code fragments from the source file "cap3d.c":

if (!extractGateGndCap3d) { gndFilters |= 1 << 31; subFilters |= 1 << 31; }

if (!extractDiffusionCap3d) { gndFilters |= 1 << 30; subFilters |= 1 << 30; }

#define hasFilter(sp) (sp->isGate & (1 << 28))

#define hasDiff(sp) (sp -> isGate & (1 << 30))

#define hasGate(sp) (sp -> isGate & (1 << 31))

int extractGnd (spider_t *s1) {

if (s1 -> isGate) {

if (s1 -> isGate & (s1 -> subnode2 ? subFilters : gndFilters)) return 0;

if (s1 -> isGat2 & (s1 -> subnode2 ? subFilter2 : gndFilter2)) return 0;

}

return 1;

}

int extractCoup (spider_t *s1, spider_t *s2) {

if (s1 -> isGate) {

if (hasFilter (s1) && hasFilter (s2)) {

con1 = (1 << s1 -> conductor);

con2 = (1 << s2 -> conductor);

f = s1 -> isGate & s2 -> isGate & 0x0fffffff;

for (i = 0; f; ++i, f >>= 1) if (f & 1) {

if((cap_filter[i].con1 & con1) && (cap_filter[i].con2 & con2)) return 0;

if((cap_filter[i].con1 & con2) && (cap_filter[i].con2 & con1)) return 0;

}

f = s1 -> isGat2 & s2 -> isGat2;

for (i = 28; f; ++i, f >>= 1) if (f & 1) {

if((cap_filter[i].con1 & con1) && (cap_filter[i].con2 & con2)) return 0;

if((cap_filter[i].con1 & con2) && (cap_filter[i].con2 & con1)) return 0;

}

}

if (hasDiff (s1)) {

if (hasDiff (s2)) return extractDiffusionCap3d;

else if (hasGate (s2)) return extractGateDsCap3d;

}

else if (hasGate (s1) && hasDiff (s2)) return extractGateDsCap3d;

}

return 1;

}

void addCap (spider_t *s1, spider_t *s2, schur_t val) {

if (s1 != s2) {

if (s1->subnode->node != s2->subnode->node)

if (extractCoup (s1, s2)) capAdd (s1->subnode, s2->subnode, -val, 0);

if (extractGnd (s2)) capAdd (s2->subnode, s2->subnode2, val, 0);

}

if (extractGnd (s1)) capAdd (s1->subnode, s1->subnode2, val, 0);

}

The Nelsis IC Design System

Resistance and Capacitance Filters 8

5. EXAMPLE TECHNOLOGY FILE

space element definition file for scmos_n example process

with transistor bulk connections and substrate terminals

for substrate contacts and nmos bulk connections, and

with information for 3D capacitance extraction.

unit resistance 1 # ohm

unit c_resistance 1e-12 # ohm umˆ2

unit a_capacitance 1e-6 # aF/umˆ2

unit e_capacitance 1e-12 # aF/um

unit capacitance 1e-15 # fF

unit vdimension 1e-6 # um

conductors :

name : condition : mask : resistivity : type

cond_mf : cmf : cmf : 0.045 : m # first metal

cond_ms : cms : cms : 0.030 : m # second metal

cond_pg : cpg : cpg : 40 : m # poly interconnect

cond_pa : caa !cpg !csn : caa : 70 : p # p+ active area

cond_na : caa !cpg csn : caa : 50 : n # n+ active area

cond_well : cwn : cwn : 0 : n # n well

filters :

name : masks1 : masks2 : fmask : type

cfilter_1 : caa cpg cwn : caa cpg cwn : cx : c

cfilter_1g: caa : @gnd : cx : c

rfilter_1 : caa cpg cwn : : cx : r

rfilter_2 : cms : @sub : cx : r

fets :

name : condition : gate d/s : bulk

nenh : cpg caa csn : cpg caa : @sub # nenh MOS

penh : cpg caa !csn : cpg caa : cwn # penh MOS

contacts :

name : condition : lay1 lay2 : resistivity

cont_s : cva cmf cms : cmf cms : 1 # metal to metal2

cont_p : ccp cmf cpg : cmf cpg : 100 # metal to poly

cont_a : cca cmf caa !cpg cwn !csn

| cca cmf caa !cpg !cwn csn

: cmf caa : 100 # metal to active area

cont_w : cca cmf cwn csn : cmf cwn : 80 # metal to well

cont_b : cca cmf !cwn !csn : cmf @sub : 80 # metal to subs

junction capacitances ndif :

name : condition : mask1 mask2 : capacitivity

acap_na : caa !cpg csn !cwn : @gnd caa : 100 # n+ bottom

ecap_na : !caa -caa !-cpg -csn !-cwn : @gnd -caa : 300 # n+ sidewall

junction capacitances nwell :

acap_cw : cwn : @gnd cwn : 100 # bottom

ecap_cw : !cwn -cwn : @gnd -cwn : 800 # sidewall

The Nelsis IC Design System

Resistance and Capacitance Filters 9

junction capacitances pdif :

acap_pa : caa !cpg !csn cwn : caa cwn : 500 # p+ bottom

ecap_pa : !caa -caa !-cpg !-csn cwn -cwn : -caa cwn : 600 # p+ sidewall

capacitances :

polysilicon capacitances

acap_cpg_sub : cpg !caa !cwn : cpg @gnd : 49

acap_cpg_cwn : cpg !caa cwn : cpg cwn : 49

ecap_cpg_sub : !cpg -cpg !cmf !cms !caa !cwn : -cpg @gnd : 52

ecap_cpg_cwn : !cpg -cpg !cmf !cms !caa cwn : -cpg cwn : 52

first metal capacitances

acap_cmf_sub : cmf !cpg !caa !cwn : cmf @gnd : 25

acap_cmf_cwn : cmf !cpg !caa cwn : cmf cwn : 25

ecap_cmf_sub : !cmf -cmf !cms !cpg !caa !cwn : -cmf @gnd : 52

ecap_cmf_cwn : !cmf -cmf !cms !cpg !caa cwn : -cmf cwn : 52

acap_cmf_caa : cmf caa !cpg !cca : cmf caa : 49

ecap_cmf_caa : !cmf -cmf caa !cms !cpg : -cmf caa : 59

acap_cmf_cpg : cmf cpg !ccp : cmf cpg : 49

ecap_cmf_cpg : !cmf -cmf cpg !cms : -cmf cpg : 59

second metal capacitances

acap_cms_sub : cms !cmf !cpg !caa !cwn : cms @gnd : 16

acap_cms_cwn : cms !cmf !cpg !caa cwn : cms cwn : 16

ecap_cms_sub : !cms -cms !cmf !cpg !caa !cwn : -cms @gnd : 51

ecap_cms_cwn : !cms -cms !cmf !cpg !caa cwn : -cms cwn : 51

acap_cms_caa : cms caa !cmf !cpg : cms caa : 25

ecap_cms_caa : !cms -cms caa !cmf !cpg : -cms caa : 54

acap_cms_cpg : cms cpg !cmf : cms cpg : 25

ecap_cms_cpg : !cms -cms cpg !cmf : -cms cpg : 54

acap_cms_cmf : cms cmf !cva : cms cmf : 49

ecap_cms_cmf : !cms -cms cmf : -cms cmf : 61

lcap_cms : !cms -cms =cms : -cms =cms : 0.07

vdimensions :

v_caa_on_all : caa !cpg : caa : 0.30 0.00

v_cpg_of_caa : cpg !caa : cpg : 0.60 0.50

v_cpg_on_caa : cpg caa : cpg : 0.35 0.70

v_cmf : cmf : cmf : 1.70 0.70

v_cms : cms : cms : 2.80 0.70

dielectrics :

Dielectric consists of 5 micron thick SiO2

(epsilon = 3.9) on a conducting plane.

SiO2 3.9 0.0

air 1.0 5.0

The Nelsis IC Design System

