
SLS : SWITCH-LEVEL SIMULATOR

USER’S MANUAL

A. C. de Graaf

A. J. van Genderen

Circuits and Systems Group

Department of Electrical Engineering

Delft University of Technology

The Netherlands

Copyright © 1987-2003 by the authors.

All rights reserved.

Date: October, 1987.

Last revision: May, 2003.



Sls User’s Manual 1

1. INTRODUCTION

This manual is meant as a guide to users who want to simulate their network with the sls

simulator. The acronym sls stands for Switch-Level Simulator, and the simulator can be

used for simulating the logical and timing behavior of digital MOS circuits. In the

simulator transistors are modeled by grounded capacitors and a switched resistor. Each

node in the network has a logic state O, I or X (for unknown), and each transistor has a

state on, off or undefined. Many characteristics of MOS circuits can be modeled

accurately, including: ratioed, complementary and precharged logic; dynamic and static

storage; pass transistors; busses; and charge sharing. Because the simulator performs

local-event-driven simulation, large networks with thousands of transistors can be

simulated in a reasonable time.

The sls simulator is capable of simulating a MOS transistor network at three levels:

1. purely logic simulation based on network topology and transistor types, without

considering the actual circuit parameters.

2. logic simulation based on actual circuit parameters (transistor dimensions and

interconnection resistances and capacitances are used to determine logic states).

3. logic and timing simulation based on actual circuit parameters (transistor

dimensions and interconnection resistances and capacitances are used to determine

logic states and delays).

Other important features of the simulator are:

• piece-wise-linear voltage wav eform approximations with timing simulation.

• min-max delay simulation to account for circuit parameter deviations and model

accuracy.

• mixed-level simulation for transistor-level, gate-level and function-level circuits.

The original switch-level model - which only allows a simulation at the first level - was

introduced by R.E. Bryant. Descriptions of it are given in [1] and [2]. In [3], [4] and [5]

the principle of the sls simulator is described. The limitations of the simulator can also

be found there: Due to its simple transistor model, sls is not as accurate as a circuit

simulator like SPICE [6], while sometimes the transistor-level description of analogue

circuits like sense amplifiers can not be simulated correctly at all.

Section 2 in this manual gives an overview of the sls package of programs.

Section 3 describes the syntax and semantics of the network description language.

Section 4 contains the syntax and semantics of the command language.

Section 5 gives some suggestions for solving troubles.

The use of function-level circuit descriptions in the sls simulator is explained in [7].

The Nelsis IC Design System



Sls User’s Manual 2

2. DESCRIPTION OF THE SLS-PACKAGE

The switch level simulation package consists of a number of programs. In Figure 1 the

relation between the three main programs is outlined. In this figure you will find the

following symbols:

Rectangle Rectangles stand for executable programs. The name of a particular

program is printed inside the rectangle.

Punch-card A punch-card symbol stands for one file. A deck of punch-cards stands

for multiple files.

Arrow An arrow denotes the information flow between programs and files.

Programs can read/write information from/to several different files.

csls sls_exp sls

network

file

command

file

network

db-format

binary file

for sls

database

cell.out

file

cell.res

file

cell.plt

file

Figure 1. Information flow diagram of the SLS-package.

The Nelsis IC Design System



Sls User’s Manual 3

The SLS-package involves three main programs.

1. csls maps a hierarchical sls network description contained in one or several files

into a network description in database format.

2. sls_exp maps the network description in database format into a binary (i.e. non

readable) file which serves as input file for the switch level simulator. Actually a

collection of binary files can be created in the database, because first a binary file

for each subnetwork is created once. The expansion program links the binary files

of the subnetworks into one binary file of the total network. Normally, sls_exp is

automatically called by sls when starting a simulation.

3. sls is the switch level simulation program and reads input from two files:

A binary file This file is generated by sls_exp and contains the network

description in binary format.

A command file This file contains the simulation commands and must be

generated manually by the designer.

the output files that can be generated by sls are:

cell.out This file is the normal readable and printable output in table format.

Here "cell" stands for the name of the cell that is simulated.

cell.res This file is not readable and serves as input for several post

processing facilities or as input for new simulations.

cell.plt This file is only generated when approximating voltage wav eforms

are plotted. The file is not readable but can be used as input for a

post-processor.

cell.dis This file is optionally generated when information about the dynamic

dissipation in the circuit is requested.

Other programs that belong to the SLS-package involve post processing facilities

producing different sorts of output. E.g. lpsig can be used to plot simulation output on a

printer, and simeye is a graphical signal display and editing program.

For the invocation of the programs above, see the manual pages in the appendix of this

manual.

Apart from using the program csls to put a network description into the database, also

other programs may be used to generate an input network for sls, like the layout to circuit

extraction program space.

The Nelsis IC Design System



Sls User’s Manual 4

3. THE DESCRIPTION OF NETWORKS

3.1 General conventions

It is common practice to describe the syntax of a computer language in some meta

language. The syntax definition of sls is described in the meta language proposed by

Wirth [8]. This language has two types of symbols:

terminal symbols These symbols are denoted by characters between double

quote marks, or words printed in italic font. They must be

used literally or are described in the table "lexical

constructions".

non-terminal symbols These are denoted by words in the ordinary font, and each of

them is described by a so-called production rule.

Each production rule of the sls syntax begins with a non-terminal, followed by an equal-

sign and a sequence of terminal and non-terminal symbols and meta characters, and is

terminated by a period. The meta characters imply:

Alternatives |  A vertical bar between symbols denotes the choice of either one

symbol or another symbol. (i.e. a | b means either a or b)

Repetition {} Curly brackets denote that the symbols in between may be present

zero or more times.

(i.e. { a } stands for empty | a | aa | aaa | ...)

Optionality [] Square brackets denote that the symbols between them may be

present.

(i.e. [ a ] stands for a | empty)

Parenthesis () Parenthesis serve for grouping of symbols in meta character

expressions.

(i.e. ( a | b ) c stands for ac | bc)

Next the following rules are applied:

— A comment begins with "/*" and is terminated by "*/" as in the C-language. Every

character in between is discarded by the parser. You are not allowed to nest

comments.

— A name or identifier must begin with a letter and may be followed by an arbitrary

number of letters, digits and underscore characters.

— Uppercase and lowercase letters are distinct.

— The blank, tab and newline are separators. Between two symbols of a production rule

of a non-terminal symbol, an arbitrary number of separators may appear.

The Nelsis IC Design System



Sls User’s Manual 5

— Values are specified in S.I. units (e.g. meter, farad, ohm), and may appear with one of

the following scaling factors:

f = 1.0e-15

p = 1.0e-12

n = 1.0e-9

u = 1.0e-6

m = 1.0e-3

k = 1.0e+3

M = 1.0e+6

G = 1.0e+9

— Terminal symbols that are not literal are described in the next table. The difference

between this syntax description (of terminal symbols) and following syntax

descriptions (of non-terminal symbols) is that here it is not allowed to use separators

between the symbols that make up the production rule.

TABLE 1. Lexical constructions

power_ten = "1"{"0"}[("f"|"p"|"n"|"u"|"m"|"k"|"M"|"G")].

f_float = float[("f"|"p"|"n"|"u"|"m"|"k"|"M"|"G")].

float = integer["."integer][exponent]

exponent = ("D"|"E"|"d"|"e")[("-"|"+")]integer.

identifier = letter {(letter | digit | "_")}.

string = """ character { character } """.

character = digit | letter | special.

integer = digit {digit}.

letter = "a"|"b"|"c"|"d"|"e"|"f"|"g"|"h"|"i"|"j"

| "k"|"l"|"m"|"n"|"o"|"p"|"q"|"r"|"s"|"t"

| "u"|"v"|"w"|"x"|"y"|"z"

| "A"|"B"|"C"|"D"|"E"|"F"|"G"|"H"|"I"|"J"

| "K"|"L"|"M"|"N"|"O"|"P"|"Q"|"R"|"S"|"T"

| "U"|"V"|"W"|"X"|"Y"|"Z".

digit = "0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9".

empty = "".

special = any character that is not a letter, digit or """.

Examples:

power_ten : 10n 100p 1000u

f_float : 1.3e-9 2.0n 6.8k 0.0004

identifier : abcd a123 this_IS_an_identifier

string : "this is a string/$*&"

The Nelsis IC Design System



Sls User’s Manual 6

3.2 Network Description

TABLE 2. Syntax of the network part.

network_decls = network_decl {network_decl}.

network_decl = network identifier decl_part ntw_body.

The network part begins with the keyword network followed by the name of the network,

a declaration part describing the interface to the outside world and a body specifying the

instances of devices and subnetworks.

3.3 Declarations

TABLE 3. Syntax of the declaration part.

decl_part = "(" term_decls ")".

term_decls = term_decl {";" term_decl}.

term decl = terminal term {"," term}.

term = identifier ["[" range_list "]"].

range_list = range {"," range}.

range = integer ".." integer.

The declaration part is bracketed by a left and right parenthesis. It must contain at least

one terminal declaration. A terminal declaration begins with the keyword terminal

followed by a list of terminals. A list of terminals consists of one or more terminals

separated by commas.

Examples:

network register (terminal in[1..4,1..4], out[1..8])

network latch (terminal in, out;

terminal phi[0..1], vss, vdd)

3.4 Network Structure

The network body (ntw_body) is the statement part (stmt_part) bracketed by curly

brackets ({}). The statement part may contain instance, net and null statements. The

scope of the terminal, instance and node names in the network is local to the defined

network.

The Nelsis IC Design System



Sls User’s Manual 7

TABLE 4. Syntax of the network body.

ntw_body = "{" stmt_part "}".

stmt_part = statement {statement}.

statement = inst_stmt | net_stmt | null_stmt.

inst_stmt = [inst_struct] inst_def.

inst_struct = "{" identifier [ "[" range_list "]" ] }"

| "{" "." "[" range_list "]" }".

inst_def = transistor_def | function_def | resistor_def

| capacitor_def | call_def.

null_stmt = ";".

net_stmt = net "{" net_spec "}" ";".

net_spec = vector_list | net_nodes ";".

vector_list = "(" net_nodes ")" {"," "(" net_nodes ")"}.

net_nodes = node_ref {"," node_ref}.

transistor_def = ttype [attributes] connect_list ";".

ttype = nenh | penh | ndep.

function_def = "@" ftype [attributes] connect_list ";".

ftype = invert | nand | nor | and | or | exor.

resistor_def = res f_float connect_list ";".

capacitor_def = cap f_float connect_list ";".

call_def = identifier connect_list";".

attributes = attribute {attribute}.

attribute = attr_label "=" attr_val.

attr_label = w | l | tr | tf.

attr_val = f_float.

connect_list = "(" connects ")" | "{" connects "}".

connects = connect {"," connect}.

connect = internal_ref | node_ref.

internal_ref = [ "[" index_list "]" ] "." node_ref.

node_ref = integer | identifier [ "[" index_list "]" ].

index_list = index {"," index}.

index = integer | range.

range_list = range {"," range }.

range = integer ".." integer.

3.4.1 instance statement

The instance statement constitutes the actual place of a device, function or subnetwork in

the network being defined. An instance may optionally have a structure part and must

have a definition part. The instance name in the structure part is especially convenient for

selecting particular nodes within the instance (as might be necessary in the simulation

command file). The instance may have an array structure, which is specified by a range

list between square brackets after the instance name. The general format of an instance

The Nelsis IC Design System



Sls User’s Manual 8

definition is:

type attributes connect_list

In each definition a node connection list is specified. This list can be interpreted in two

ways:

instance major order If the list is placed between parenthesis we define it to be in

instance major order. Instance major order means that when

the instance has array structure, for instance from 1 to 4, the

connection list will be interpreted as follows, first all the

terminal connections for the first array element, then that of

the second array element, etc..

parameter major order If the list is placed between curly brackets we define it to be

in parameter major order. Parameter major order means that

if the instance has array structure, the connection list will

consist of first the first terminals of all array elements, then

the second terminals of all array elements etc..

Examples:

{ inv[1..3] } inverter ( i1, o1,

i2, o2,

i3, o3 );

{ inv[1..3] } inverter { i1, i2, i3,

o1, o2, o3 };

{ inv[1..3,1..3] } inverter { in[1..9], out[1..9] };

When "inverter" has terminals i and o, in the first two examples i1 will be connected to

inv[1].i, o1 to inv[1].o, i2 to inv[2].i, o2 to inv[2].o, i3 to inv[3].i and o3 to inv[3].o. In

the third example, in[1] will be connected to inv[1,1].i, in[2] to inv[1,2].i, in[3] to

inv[1,3].i, in[4] to inv[2,1].i, etc. out[1] to inv[1,1].o, out[2] to inv[1,2].o, out[3] to

inv[1,3].o, out[4] to inv[2,1].o, etc.

If the instance is an array of elements one can specify internal connections in the

connection list. With an internal connection one can directly interconnect terminals of the

array elements of the instance. An internal connection is denoted by selecting a formal

terminal of an instanced (possibly array) element and is put into the right place in the

connection list.

The Nelsis IC Design System



Sls User’s Manual 9

Example:

{ inv[1..3] } inverter { i1, [1..2].o, [2..3].i, o3 };

where inverter was defined as

network inverter (terminal i, o)

{

.

.

.

}

The next subsections describe the instance definition parts that can occur.

3.4.1.1 transistor definition

A transistor definition contains three arguments.

type specifies the type of the transistor. The following three types can be

chosen:

1. nenh

2. penh

3. ndep

attributes The second argument is optional and specifies the attribute values of the

device. A transistor can have two attributes for specifying the length and

width of a transistor. If omitted the default values for length and width of

the transistor are 4 micron for sls.

connection The third argument consists of three or a multiple of three node references,

depending on the structure of the instance. The sequence of the nodes is

important as far as the gate node is concerned. The gate node must be

specified as the first node, while the sequence of the source node and drain

node is arbitrary.

Examples:

nenh w=6u l=8u (g1, d1, s1);

{ n1 } penh w=6u l=8u (g1, d1, s1);

{ ni[1..2] } nenh (g1, d1, s1, g2, d2, s2);

{ np[1..2] } ndep {g1, g2, d1, d2, s1, s2};

The Nelsis IC Design System



Sls User’s Manual 10

3.4.1.2 function definition

A function definition calls a network element that reads its inputs and produces logical

states at its output(s). Gate-level functions like nands and nors are available as built-in

functions while other, more complex functions (e.g. adders, multiplexers and roms) can

be specified by the user (see [7]).

A function definition contains four arguments:

specifier A function specifier which consists of the character "@".

type The type of the function element. The following function types are

available as built-in functions:

1. invert

2. nand

3. nor

4. and

5. or

6. exor

attributes The attributes tr and tf are optional and specify the rise time and fall time

of the output(s) when the logic state of one of the inputs changes. Default

tr=0 and tf=0.

connection Specifies the connection of the function inputs and outputs to the network

nodes. The connection list of a built-in function may contain an arbitrary

number of input nodes (except for function "invert" which may contain

only one input node) and one output node. The order is first the input

nodes and then the output node.

When two or more function outputs are connected to the same network node and not all

outputs force the same state, the X state will result.

Examples:

@ nand (a, b, c, d, e, out);

{ nands[1..2] } @ nand (a, b, out1, c, d, out2);

@ nor tr=10n tf=5n (a, b, c, d, out);

3.4.1.3 resistor definition

The resistor definition is specified by the keyword res, the resistance value in Ohm and

two node references. The resistance value may be a floating point number and may have

a multiplication factor denoted by a letter as described in section 1.

The Nelsis IC Design System



Sls User’s Manual 11

Example:

res 2k (a, out);

3.4.1.4 capacitor definition

The capacitor definition is specified by the keyword cap, a capacitance value in Farad and

two node references. The capacitance value may be a floating point number with a

multiplication factor.

Example:

cap 8.6f (12, a);

3.4.1.5 call definition

A network call defines the instance of a subnetwork. The sequence of the connection list

is the same as the sequence of the terminal declaration of the called network.

Example:

when network subntw was defined as

network subntw (terminal in[1..2], out, vdd, vss)

{

.

.

}

the instance

subntw (a, b, c, vdd, vss);

will connect a to in[1], b to in[2], c to out, vdd to vdd, and vss to vss.

3.4.2 net statement

The net statement gives the opportunity to coalesce, cluster and define nodes. This

statement is especially convenient if the network description is extracted from a layout

description. In a layout description terminals often represent the same electrical node and

it would be tedious to specify a stimulus for each of these terminals.

coalesce Normally all specified terminals between curly brackets are coalesced to

one electrical node.

The Nelsis IC Design System



Sls User’s Manual 12

cluster A list of parenthesized lists of terminals means that the the terminals

between the parenthesis will be coalesced element wise. The number of

elements in all parenthesized lists must be equal!

define If a terminal in the list between curly brackets is not defined it will be

defined and can function as local node.

Examples:

net { a[1..8], b, c }; /* connect to one */

net { (a[1..4]), (b, c, d, e) }; /* connect element wise */

net { (a[1..4]) }; /* define local array */

3.5 External Network Declaration

TABLE 5. Syntax of an extern network declaration.

extern_network_decl = extern network identifier decl_part.

Apart from one or more network descriptions, a network file may also contain one or

more external network declarations. An external network declaration begins with the

keywords extern and network followed by the name of the network, and followed by a

declaration part similar to the declaration part of a network description. An external

network declaration is used to specify a sequence for the terminals of networks that are

not described in the network file in which they are used as instance. This sequence is

then used to connect the terminals of each instance of the subnetwork. An external

network declaration may for example be useful when describing networks that contain

subnetworks that are generated by an extraction program. The extraction program will

generate the terminals in an arbitrarily order and in order to appropriately connect these

terminals, an external network declaration of the subnetwork should be added to each file

in which the subnetwork is used as an instance.

Example:

extern network subntw (terminal in[1..2], out, vdd, vss)

network totalntw (terminal x[1..2], vdd, vss)

{

.

.

subntw (a, b, c, vdd, vss);

}

The Nelsis IC Design System



Sls User’s Manual 13

3.6 Global Nets

A net (node) may be defined a "global net" by specifying it in a file called ’global_nets’.

This file may optionally be present in the current project directory or, otherwise, in the

corresponding process directory. The file ’global_nets’ is read by the program csls, and

for each network that is added to the database, csls takes care that at least terminals are

present that have a name equal to the names of all global nets that are specified in the file

’global_nets’. Further, csls connects all terminals and nets that have a same name that is

a global net name. Names of global nets may not have an array form.

The Nelsis IC Design System



Sls User’s Manual 14

3.7 Examples

3.7.1 latch example

A latch is a two phase clocked register element. Figure 2 shows the transistor diagram

and the network description of the latch circuit. The circuit consists of three inverter

stages. Two of these stages are connected as a flipflop by phi2_l. The input signal is

clocked by phi1, whereas the output stage is clocked by phi2_r.

vdd

vss

7

out

in
6 9

phi1

phi2_l

phi2_r

10

network latch (terminal vdd, vss, phi1, phi2, out, in)

{

net {phi2, phi2_r, phi2_l}; /* equivalent nodes */

nenh w=8u l=4u (9, vss, 7);

nenh w=8u l=4u (10, vss, out);

nenh w=8u l=4u (6, vss, 9);

nenh w=8u l=4u (phi1, in, 6);

nenh w=8u l=4u (phi2_l, 6, 7);

nenh w=8u l=4u (phi2_r, 9, 10);

ndep w=6u l=18u (out, out, vdd);

ndep w=6u l=18u (9, vdd, 9);

ndep w=6u l=18u (7, 7, vdd);

}

Figure 2. Transistor diagram and network description of the latch circuit.

Note that the two terminals phi2_l and phi2_r are coalesced to one terminal named phi2

in the net declaration, for these terminals represented the same electrical node.

The Nelsis IC Design System



Sls User’s Manual 15

3.7.2 hierarchical latch example

The hierarchical network description of the latch is shown in Figure 3. The latch consists

of three inverter networks connected by pass transistors. Inside each inverter network

you will find terminals that have equal names. These terminals represent feed-throughs

in the inverter and are electrically equivalent.

invert

i i

io

o

vdd

vss

invert

i i

io

o

vdd

vss

invert

i i

io

o

vdd

vss

vdd

vss

7

out

in

6

9

phi1

phi2_l

phi2_r

109

network invert (terminal i, o, vdd, gnd)

{

nenh w=8u l=4u (i, o, gnd);

ndep w=6u l=18u (o, vdd, o);

}

network latch (terminal vdd, vss, phi1, phi2, out, in)

{

net {phi2, phi2_r, phi2_l}; /* equivalent nodes */

{inv[1..3]} invert (6, 9, vdd, vss,

9, 7, vdd, vss,

10, out, vdd, vss);

nenh w=8u l=4u (phi1, in, 6);

nenh w=8u l=4u (phi2_l, 6, 7);

nenh w=8u l=4u (phi2_r, 9, 10);

}

Figure 3. Hierarchical description of the latch circuit.

The Nelsis IC Design System



Sls User’s Manual 16

3.7.3 latch with nand example

The previous latch example only contained transistors. Besides transistors, resistors and

capacitors it is also possible to use function elements (ands, ors, nands, nors and exors) in

the network description. In the following example the network inverter of the

hierarchical latch circuit has been changed. The n-enhancement and depletion transistor

have been substituted by a nand gate with one input. The total network description is

now.

network invert (terminal i, o)

{

@ nand tr=5n tf=3n (i, o);

}

network latch (terminal vdd, vss, phi1, phi2, out, in)

{

net {phi2, phi2_r, phi2_l}; /* equivalent nodes */

{inv[1..3]} invert (6, 9,

9, 7,

10, out);

nenh w=8u l=4u (phi1, in, 6);

nenh w=8u l=4u (phi2_l, 6, 7);

nenh w=8u l=4u (phi2_r, 9, 10);

}

The last node name of the nand statement gives the output of the nand. In this example

there is only one input node for the nand, so only one node precedes the output node.

However, it is possible to use an arbitrarily number of input nodes for a function. For the

nand a rise time of 5 nsec. and a fall time of 3 nsec. have been specified.

The Nelsis IC Design System



Sls User’s Manual 17

3.7.4 shift example

Figure 4 shows the transistor diagram and the network description of a circuit which we

will call shift.

vdd

vss

in

out

phi1 phi2

1 2

3

4

network shift (terminal vdd, vss, phi1, phi2, in, out)

{

nenh w=6u l=4u (in, vss, 1);

ndep w=6u l=10u (1, 1, vdd);

nenh w=8u l=4u (phi1, 1, 2);

cap 400f (2, vss);

nenh w=8u l=4u (phi2, 2, 3);

nenh w=6u l=4u (3, vss, 4);

nenh w=6u l=4u (vdd, 4, vdd);

res 20k (4, out);

cap 150f (out, vss);

}

Figure 4. Transistor diagram and network description of the shift circuit.

In the shift circuit, the inverted input signal is clocked by phi1 onto a large storage

capacitance. When phi1 becomes low and phi2 becomes high, the storage capacitance

shares its charge with the gate capacitance of the second inverter stage. Because the gate

capacitance is several times smaller then the storage capacitance, the gate will obtain the

same state as the storage capacitance. The second inverter stage consists of two

enhancement transistors with the upper transistor being saturated and acting as load for

the lower transistor. The resistor and capacitor on the output represent interconnection

resistance and capacitance.

The Nelsis IC Design System



Sls User’s Manual 18

3.7.5 flipflop example

Figure 5 shows the transistor diagram and the network description of a flipflop circuit. In

this circuit the two nand circuit stages are cross coupled together by attaching the output

of one nand to an input of the other.

vdd

vss

in[1]

out[1] out[2]

in[2]

network flipflop (terminal vdd, vss, in[1..2],

out[1..2])

{

nenh w=6u l=4u (in[1], vss, 1);

nenh w=6u l=4u (out[1], 2, out[2]);

nenh w=6u l=4u (in[2], vss, 2);

nenh w=6u l=4u (out[2], 1, out[1]);

ndep w=6u l=20u (out[1], out[1], vdd);

ndep w=6u l=20u (out[2], out[2], vdd);

cap 100f (out[1], gnd);

cap 150f (out[2], gnd);

}

Figure 5. Transistor diagram and network description of the flipflop circuit.

The Nelsis IC Design System



Sls User’s Manual 19

4. SIMULATION AND SIMULATION COMMANDS

4.1 Simulation Control Commands

The simulation control commands must reside in a separate file (the command file). This

file contains the signal descriptions of the network inputs and the commands which

specify options and output format.

TABLE 6. Syntax of the simulation control part.

sim_cmd_list = sim_cmd ( ";" | newline )

{ sim_cmd ( ";" | newline ) }.

sim_cmd = set_cmd | fill_cmd | def_cmd | print_cmd | plot_cmd

| dump_cmd | initialize_cmd | dissip_cmd | option_cmd | empty.

set_cmd = set node_refs "=" signal_exp

| set node_refs ":" node_refs from string.

signal_exp = value_exp { value_exp }.

value_exp = value [ "*" duration ].

value = h | l | x | f | "(" signal_exp ")".

duration = integer | "˜".

fill_cmd = fill full_node_ref with fill_vals.

fill_vals = fill_val { fill_val }.

fill_val = string | integer | f_float.

def_cmd = define node_refs ":" identifier def_minterms.

def_minterms = def_minterm { def_minterm }.

def_minterm = def_in_val { def_in_val } ":" def_out_val.

def_in_val = h | l | x | -.

def_out_val = integer | identifier | $identifier.

print_cmd = print node_refs.

plot_cmd = plot node_refs.

dump_cmd = dump at integer.

initialize_cmd = initialize from string.

dissip_cmd = dissipation [ node_refs ].

option_cmd = option option { option }.

option = simperiod "=" integer

| sigoffset "=" integer

| sigunit "=" f_float

| outunit "=" power_ten

| outacc "=" power_ten

| level "=" integer

| process "=" string

| tdevmin "=" f_float

| tdevmax "=" f_float

| step "=" ( on | off )

| print races "=" ( on | off )

The Nelsis IC Design System



Sls User’s Manual 20

| maxldepth "=" integer

| only changes "=" ( on | off )

| disperiod "=" integer

| print devices "=" ( on | off )

| print statistics "=" ( on | off )

| maxpagewidth "=" integer

| vh "=" f_float

| vminh "=" f_float

| vmaxl "=" f_float

| initialize random "=" ( on | off )

| initialize full random "=" ( on | off )

| sta_file "=" ( on | off ).

node_refs = node_ref_item { node_ref_item }.

node_ref_item = full_node_ref | ",".

full_node_ref = [ "!" ] { inst_name "." } node_ref.

inst_name = identifier [ "[" index_list "]" ].

node_ref = integer | identifier [ "[" index_list "]" ].

index_list = index { "," index }.

index = integer | range.

range = integer ".." integer.

Simulation commands are separated by a newline character or by a ";". So unlike with

the network description language, a newline character can not be used here as an ordinary

separator between symbols. However, a newline can be escaped as a command separator

by preceding it with a "\".

For an explanation of the non-literal terminals (e.g power_ten, f_float, etc.) the reader is

referred to the table "lexical constructions" in the network syntax description part in this

manual

Examples of node references (node_refs) in the commandfile are

cin 4, counter1.latch_a.112

total.submod[0..7,3].in[4..1]

with counter1, latch_a, total and submod[0..7,3] being instance names.

The explanation to the simulation commands is given in the next paragraphs.

4.1.1 set command

The set command describes the pulse signals that are applied to the network. A node

with a signal attached is by definition an input node. (In principle each node in the

network, including non-terminal nodes, may be used as an input node). The signal

expression that describes the signal in the set command consists of a sequence of value

expressions. A value expression specifies a logic level (i.e. l = 0, h = 1 and x =

The Nelsis IC Design System



Sls User’s Manual 21

undefined), the absence of a forced signal (i.e. f = free state) or a nested signal expression

(between curly brackets), all with an optional duration. The duration specifies how many

times the value expression is added to the preceding value expressions. By absence of the

duration the default 1 is assumed. The values l, h, x or f are pulse functions with width is

1. So for the following set command:

set node1 = l*2 h*˜

the process of generation is shown in Figure 6.

l

l*2

h

h*˜

l*2 h*˜

0 2 4 6 8 10 12 14 16 18 20 22 24

time

Figure 6. Construction of an input signal.

A tilde (˜) expresses infinite duration. When no infinite duration is specified in the signal

expression, after the duration of the signal expression the signal value of the node

remains its last value.

Note that it is possible to initialize a node in the high state by

set node1 = h*1 f*˜

The other way to apply a signal to a node is by using a signal description present in a .res

file (which can be the output of a previous simulation) Then the first group of nodes is

followed by another group of nodes and a file specification. The second group of nodes

must be nodes which were printed when the .res file denoted by string (which is the file

name without the extension ".res") was made. The number of nodes in the first group

must be equal to the number of nodes in the second group because the node to node

assignment is done in pairs. For example, to set the signal descriptions of nodes in[1..8]

equal to the simulation results of nodes out[1..8] which are in file "counter.res":

set in[1..8] : out[1..8] from "counter"

The Nelsis IC Design System



Sls User’s Manual 22

4.1.2 fill command

With this command, state variables of function blocks can be initialized. To select a

particular state variable, the variable must be preceded by the (possibly hierarchical)

instance name of the function block. The type of the variable must correspond to the type

of the value that is assigned to it, with the convention that a string is used to specify one

or more character values.

Example:

fill ram1.mem[2..3, 0..3] with "OIOI" "OOII"

4.1.3 define command

With this command, one can define new output values for the network based on certain

combinations of normal node values. For example, one may define the value of a state

variable based on the values of a set of nodes, or one may translate the values of a bundle

of nodes into an integer value. After the keyword "define", first the nodes are specified

that are used to determine the value of the new variable that is defined. Then, after a

colon, the name of the new variable is specified. Next, an arbitrary number of minterms

is defined. Each minterm consists of a number of node values (h, l, x or - for don’t care)

equal to the number of input nodes, followed by a colon and followed by the

corresponding value for the new variable. The output value may be an integer, an

identifier or a keyword starting with a "$". The simulator recognizes the following

keywords starting with a "$":

$bin print binair representation.

$dec print decimal representation.

$oct print octal representation.

$hex print hexadecimal representation.

$sbin, $sdec, $soct, $shex

idem, use left-most value as sign bit.

$tbin, $tdec, $toct, $thex

idem, assume two-complements representation.

During simulation, the simulator traverses the list of minterms, starting with the first

minterm, to find a matching input combination. If it finds a matching input combination,

the output value of that minterm is used. If no matching combination of input values is

found, an X output value is used. The output values of the new variables can be printed

out by referring to them in a print command (see below).

The Nelsis IC Design System



Sls User’s Manual 23

Examples:

define a_1 a_2 : inputstate \

- h  : disabled \

l l  : nothing \

h l  : push

define in[1..8] : count8 \

- - - - - - - - : $dec

4.1.4 print command

The print command specifies nodes that must be printed out. The sequence of the nodes

printed out is the same as specified in the print command. When a comma is specified in

the print command, an empty column is printed on that place in the output. When an "!"

sign is used before a node specification, the inverse value will be printed for that node.

The output will be printed in a file named to the network and tagged with the extension

".out". If the network name is longer than ten characters it will be truncated to ten

characters.

Examples:

print in[3..0], out[7..0], !notcarry,

print inv.i inv.o

The last print command will print node "i" and node "o" of the sub-cell with instance

name "inv". Apart from any network node, also the value of a user-defined variable may

be printed.

4.1.5 plot command

For nodes that are specified in the plot command, a description of their approximating

voltage wav eforms will be stored in the file "network.plt". To visualize these voltage

waveforms, an appropriate post-processor is required (lpsig or simeye).

Example:

plot cout sout inv1.in

4.1.6 dump command

With the dump command, the state of a network can be dumped at any time. Together

with the initialize command this allows next simulations to start from that particular

point. This can be convenient for example when several simulations have to be done for a

circuit in which first a large number of registers has to be filled by means of shift

operations. The file in which the state will be dumped will be called "dump.time", where

time is the simulation time at which the dump is done. During one simulation more than

The Nelsis IC Design System



Sls User’s Manual 24

one dump may be executed.

Example:

dump at 200

4.1.7 initialize command

The initialize command specifies a network state file that is used to initialize the network

state at the beginning of the simulation. The network state file must have been obtained

by using the dump command during a previous simulation.

Example:

initialize from "dump.200"

4.1.8 dissipation command

The dissipation command allows the user to obtain estimated values for the dynamic

dissipation in the circuit. The information provided is only valid for networks that are

described at the transistor level. For the (network input) nodes that are given as an

argument to the dissipation command, the dynamic dissipation in Watts will printed in a

file called cell.dis. The total dissipation for the network can also be found there. By

using the option disperiod, it is possible to obtain an average dissipation for different time

intervals.

4.1.9 option command

4.1.9.1 simperiod

Specifies the end time (expressed in sigunit) of the simulation time interval. The start of

the simulation is always at t = 0. When simperiod is not specified, the simulation will

stop when the network has stabilized after the last input change.

(default simperiod = endless)

4.1.9.2 sigoffset

Specifies the offset that is used for the signal specifications in the set command. That is,

each signal specification f(t) in the set command will be used as f(t-sigoffset) during

simulation.

(default sigoffset = 0)

4.1.9.3 sigunit

Specifies (in seconds) the unit of signal duration in the set command, and the unit of each

other variable that denotes a time (e.g. the unit of simperiod).

The Nelsis IC Design System



Sls User’s Manual 25

(default sigunit = 1)

4.1.9.4 outunit

Specifies the unit of time that will be used in the simulation output.

(default outunit = power_ten that is closest to sigunit)

4.1.9.5 outacc

Specifies the unit of the least significant decimal of the time in the simulation output. It

must hold that outacc <= outunit.

(default outacc = outunit)

4.1.9.6 level

Specifies the level of simulation. There are three simulation levels :

level 1

The simulator uses abstractions for transistors and nodes to determine logic states. The

conduction of n-enhancement and p-enhancement type transistors is always considered

then to be equal and much larger than the conduction of depletion transistors, and the

capacitances of all nodes are considered to be equal. A logic O or I state is only assigned

when the conducting path to an O or I state input has a much larger conduction than the

paths to other input nodes, or - with charge sharing - only when all nodes have the same

logic state. In other situations the X state is assigned.

level 2

With level 2, logic state determination is based on the actual parameters of transistors (i.e.

width and length) and interconnections (i.e. resistances and capacitances). In this way the

simulator is able to find the right states for circuits where charge sharing effects occur

between nodes with different capacitances and different states, and for circuits that

exploit a high-impedance/low-impedance resistance division effect between transistors of

the same type. In addition to the latter, at lev el 2 the simulator will also account for the

fact that n and p-enhancement transistors may be saturated. During simulation at level 2,

first for each node an analogue voltage is determined by means of charge sharing or

resistance division, and next a logic state is derived by means of a minimum voltage for

the high state (vminh) and a maximum voltage for the low state (vmaxl). When a

simulation is done at level 2, dimensions of transistors must be present in the network and

process information is used.

level 3

The simulator can also be used to simulate the timing of a network. Based on the

parameters of the transistors and the interconnections, also the delay times for the logic

The Nelsis IC Design System



Sls User’s Manual 26

state transitions are determined then. To find the delay times, the simulator uses

approximating piece-wise-linear voltage wav eforms that are found by performing RC

constant calculations. At the start of a simulation at level 3, first a steady state of the

network is determined according to level 2. To simulate with timing, transistor

dimensions must be present in the network file and process information is used. Only at

level 3 the rise and fall delays of the function elements (nands, nors etc.) are taken into

account.

(default level = 1)

4.1.9.7 process

Specifies the process file that contains the process information (e.g. transistor model

capacitances and resistances) which is used when simulation is done at level 2 or 3. First

the working directory is searched for this file. When it is not found there, the process

library directory is searched. In slsmod(4ICD) and [9] the syntax and semantics of a

process file is described.

(default process = "slsmod")

4.1.9.8 tdevmin,tdevmax

By specifying minimum and maximum timing deviations it is possible to do a min-max

delay simulation at level 3. The delays of the logic state transitions are multiplied by

tdevmin and by tdevmax, to obtain a min-delay and a max-delay for each logic state

transition. For example, when a node normally changes from O to I after 10 ns., a

tdevmin = 0.6 and a tdevmax = 1.3 causes that the node will change from the O to the X

state after 6 ns., and to the I state after 13 ns. In this way it is possible to determine how

the final logical state of the simulated network depends on timing deviations due to

parameter variations or model accuracy (see also the flipflop example at the end of this

chapter). Note: strictly speaking tdevmin and tdevmax speed up and slow down the

minimum and maximum voltage wav eforms that are being used by the simulator, and

delay times are affected only indirectly.

(default tdevmin = 1, tdevmax = 1)

4.1.9.9 step

When step is on, the values of nodes that are specified by the print command, are printed

immediately after a change has occurred in the value of one of these nodes. In this way

the simulation of the network can be debugged by observing all logic state transitions

occurring on the printed nodes. It must be realized here that even during simulation

without timing (i.e. at level 1 or 2), the simulator always performs sequential simulation

steps to update logic states. When step is off, the values of the output nodes are printed

only after each new stabilization of the printed nodes at a particular time.

The Nelsis IC Design System



Sls User’s Manual 27

(default step = off)

4.1.9.10 print races

When feedback loops are in the network (e.g. flipflops), there sometimes may occur zero-

delay oscillations during the simulation because of undecided races. The simulator will

automatically put the relevant nodes in the undefined state. Print races is on will cause

the simulator to give a list at the end of the simulation output, which shows where and

when these races appeared.

(default print races = on)

4.1.9.11 maxldepth

With the maximum logic depth of the network (maxldepth), the simulator decides when

an oscillation because of undecided races is occurring (see option print races). When

maxldepth is specified too small the simulator will put nodes in the undefined state which

shouldn’t, and when it is much too large it will cause unnecessary long simulation times

when oscillations occur. Howev er, the simulator detects that the maximum logic depth is

always less than the number of nodes in the circuit.

(default maxldepth = 100)

4.1.9.12 only changes

By using only changes is on, in the output file only the logical values that have changed

will be printed. For an output signal which didn’t change a "." will be printed. In this

way it will be more easy to trace changing signals.

(default only changes = off)

4.1.9.13 disperiod

Specifies the length of the time intervals (expressed in sigunit) for which the average

dissipation is printed (see the dissipation command).

(default disperiod = simperiod)

4.1.9.14 print devices

Usually the only extra information that is given in the simulation output is the number of

nodes in the network. When print devices is on also the numbers of the different kinds of

devices (transistors, resistors and functions) are printed in the output file.

(default print devices = off)

The Nelsis IC Design System



Sls User’s Manual 28

4.1.9.15 print statistics

When this option is on, simulation statistics like the number of simulation time points and

the number of logic events will be printed.

(default print statistics = off)

4.1.9.16 maxpagewidth

Specifies the number of characters on a line in the output file. However, when

maxpagewidth >= 80 and all printed nodes will still fit on one line of 80 characters, the

number of characters on a line in the output file will be 80.

(default maxpagewidth = 132)

4.1.9.17 vh,vminh,vmaxl

Simulation with level 2 or 3 requires a minimum stable voltage (vminh) for the I state, a

maximum stable voltage (vmaxl) for the O state, and a voltage vh for input nodes with

the I state (vl - for input nodes with the O state - is assumed to be 0 always). When a

stable voltage of a node is calculated to be between vmaxl and vminh, an X state will be

assigned to the node. Usually the variables vh, vminh and vmaxl are read from the

process file. But it is also possible to overwrite these values by specifying them in the

command file. Enlarging vmaxl for example, causes that nodes will be set to the O state

instead of the X state more often. It must hold that vmaxl < vh/2 < vminh.

(default vh, vminh, vmaxl are read from the process file)

4.1.9.18 initialize (full) random

Normally, when simulating circuits with flipflops or memory cells that do not have a reset

input, some nodes in the circuit will remain uninitialized or X. When using the option

"initialize random", the simulator will randomly set these nodes at O or I. Default, this

initialization will be the same for different simulation runs of the same network.

However, when using the option "initialize full random", the result will be different for

each different simulation run. In general, the above options allow one to reach some

valid initial state at the beginning of a simulation, without first loading a state over many

clock cycles.

(default, initialize random = off and initialize full random = off)

4.1.9.19 sta_file

Read additional commands from the file cell.sta if it exists. Typically, this option is used

to read in state variable definitions and print commands that are generated by an auxiliary

program.

(default, sta_file = off)

The Nelsis IC Design System



Sls User’s Manual 29

4.2 Examples

4.2.1 latch example

The simulation control file of the latch circuit is as follows:

/* latch simulation commands */

set in = (h*4 l*4)*2

set phi1 = (h*1 l*1)*˜

set phi2 = (l*1 h*1)*˜

set vdd = h*˜

set vss = l*˜

option simperiod = 10

print vdd vss phi1 phi2 in out

The set commands result in the following input pulse sequences:

in

phi1

phi2

0 2 4 6 8 10 12 14 16 18 20 22 24

time

The signals vdd and vss have a constant value during the simulation. The simulation

period is specified by option simperiod.

The node values of vdd, vss, phi1, phi2, in, out will printed in the file "latch.out" as

follows:

The Nelsis IC Design System



Sls User’s Manual 30

================================================================

S L S

version: 3.0

S I M U L A T I O N  R E S U L T S

================================================================

time | v v p p i o

in 1e+00 sec | d s h h n u

| d s i i  t

| 1 2

================================================================

0 | 1 0 1 0 1 x

1 | 1 0 0 1 1 1

2 | 1 0 1 0 1 1

3 | 1 0 0 1 1 1

4 | 1 0 1 0 0 1

5 | 1 0 0 1 0 0

6 | 1 0 1 0 0 0

7 | 1 0 0 1 0 0

8 | 1 0 1 0 1 0

9 | 1 0 0 1 1 1

10 | 1 0 1 0 1 1

================================================================

network : latch nodes : 10

================================================================

Remark that for the hierarchical latch example node "out" could also have been referred

to by "inv[3].o".

The Nelsis IC Design System



Sls User’s Manual 31

4.2.2 shift example

The following command file has been used to simulate the shift circuit:

set vss = l*˜

set vdd = h*˜

set phi1 = (h*200 l*200)*2

set phi2 = (l*200 h*200)*2

set in = l*400 h*400

set 3 = l*1 f*˜

option sigunit = 1n

option outacc = 10p

option level = 3

print phi1 phi2 in, 2 3 out

Because a high-impedance/low-impedance resistance division effect between two n-

enhancement transistors (a saturated one and a and a non-saturated one) is exploited, and

because charge sharing is used to force the state of a node with a large capacitance to the

state of a node with a small capacitance, the shift circuit has to be simulated with level 2

or 3. To illustrate timing simulation, level 3 has been chosen here. We hav e to choose a

proper input unit and output accuracy with the options sigunit and outacc in order to see

the delays in the simulation output. Node 3 is initialized in the low state in this command

file.

The output file "shift.out" will be as follows:

================================================================

S L S

version: 3.0

S I M U L A T I O N  R E S U L T S

================================================================

time | p p i  2 3 o

in 1e-09 sec | h h n u

| i i  t

| 1 2

================================================================

0.00 | 1 0 0 1 0 1

200.00 | 0 1 0 1 0 1

200.14 | 0 1 0 1 1 1

205.68 | 0 1 0 1 1 0

400.00 | 1 0 1 1 1 0

407.85 | 1 0 1 0 1 0

600.00 | 0 1 1 0 1 0

600.07 | 0 1 1 0 0 0

607.07 | 0 1 1 0 0 1

================================================================

network : shift nodes : 10

================================================================

The Nelsis IC Design System



Sls User’s Manual 32

4.2.3 flipflop example1

With the flipflop circuit a race condition is possible. When in[1] and in[2] both change

state from O to I simultaneously, the voltage of both out[1] and out[2] will start falling.

The transistors with their gate connected to out[1] and out[2] will start to turn off, and the

falling of the voltages of out[1] and out[2] will stop. In practice however a race condition

exists because the voltage of one output will fall somewhat faster than the voltage of the

other output, and the flipflop will be driven in a stable state where the fastest output is low

and the other output is high. The flipflop circuit is first simulated without timing. The

following command file is used:

set vss = l*˜

set vdd = h*˜

set in[1..2] = l*100 h*100

option sigunit = 1n

option outacc = 10p

option level = 2

option step = on

print in[1..2], out[1..2]

The output file "flipflop.out" will be as follows:

================================================================

S L S

version: 3.0

S I M U L A T I O N  R E S U L T S

================================================================

time | i i  o o

in 1e-09 sec | n n u u

| * *  t t

| 1 2  * *

| * *  1 2

| * *

================================================================

0.00 | 0 0 x x

0.00 | 0 0 1 1

100.00 | 1 1 1 1

100.00 | 1 1 0 0

100.00 | 1 1 1 1

100.00 | 1 1 0 0

100.00 | 1 1 1 1

100.00 | 1 1 0 0

100.00 | 1 1 1 1

100.00 | 1 1 x x

================================================================

races occurred during simulation :

time nodes

100.00 out[1] out[2]

================================================================

network : flipflop nodes : 7

================================================================

Because option step is on has been used in the command file, we see that the state of each

The Nelsis IC Design System



Sls User’s Manual 33

node is printed after each simulation step. Because simulation is done without timing,

out[1] and out[2] will change state to O at t = 100 simultaneously. The transistors will be

turned off then, node out[1] and out[2] will become I again, and the circuit will start

oscillating because of this undecided race. After a number of simulations steps equal to

the logic depth of the circuit (which the simulator assumes to be equal to the number of

nodes in the circuit) has occurred at t = 100, the simulator automaticly puts the oscillating

nodes in the X state.

4.2.4 flipflop example2

A second simulation of the flipflop circuit is done with timing. The command file is as

follows:

set vss = l*˜

set vdd = h*˜

set in[1..2] = l*100 h*100

option sigunit = 1n

option outacc = 10p

option level = 3

option step = on

print in[1..2], out[1..2]

The output file "flipflop.out" will be as follows:

================================================================

S L S

version: 3.0

S I M U L A T I O N  R E S U L T S

================================================================

time | i i  o o

in 1e-09 sec | n n u u

| * *  t t

| 1 2  * *

| * *  1 2

| * *

================================================================

0.00 | 0 0 x x

0.00 | 0 0 1 1

100.00 | 1 1 1 1

108.53 | 1 1 0 1

================================================================

network : flipflop nodes : 7

================================================================

Because now capacitances are used to find delay times for the logic state transitions, and

the capacitance of node out[1] is less than the capacitance of node out[2], node out[1]

will ’win the race’ and become O.

The Nelsis IC Design System



Sls User’s Manual 34

4.2.5 flipflop example3

Finally a min-max delay simulation of the flipflop circuit is done. The min-max delay

has been specified by means of tdevmin and tdevmax. Node out[1] will now change from

I to O via the X state. During the interval that out[1] is X, out[2] also becomes X, and the

X state will result as the stable state for out[1] and out[2]. In this way the simulator

indicates that the final logic states depend on the timing, and that wrong logic states can

result when circuit parameters have 50 percent deviations.

The following command file was used for simulation:

set vss = l*˜

set vdd = h*˜

set in[1..2] = l*100 h*100

option sigunit = 1n

option outacc = 10p

option level = 3

option tdevmin = 0.5 tdevmax = 2

option step = on

print in[1..2], out[1..2]

The output file "flipflop.out" will be as follows:

================================================================

S L S

version: 3.0

S I M U L A T I O N  R E S U L T S

================================================================

time | i i  o o

in 1e-09 sec | n n u u

| * *  t t

| 1 2  * *

| * *  1 2

| * *

================================================================

0.00 | 0 0 x x

0.00 | 0 0 1 1

100.00 | 1 1 1 1

104.26 | 1 1 x 1

104.75 | 1 1 x x

================================================================

network : flipflop nodes : 7

================================================================

The Nelsis IC Design System



Sls User’s Manual 35

4.2.6 random counter example

This example shows the approximating (min-max) voltage wav eforms as used during

timing simulation. The approximating voltage wav eforms can be inspected by using the

plot command, and by running the program simeye or the program lpsig afterwards. The

pictures as shown in this section have been obtained by running the program lpsig.

The circuit "rand_cnt" is an 8 bit random counter which uses a two-phase clock phi1 and

phi2 and which generates an 8 bit random number at the outputs out[0..7]. The command

file that has been used for the first simulation is as follows:

set in[0..7] = h*˜

set vss_r1 vss_r3 = l*˜

set vdd_r3 vdd_r2 vdd_r1 = h*˜

set phi1_r = (h*1 l*1)* ˜

set phi2_r = (l*1 h*1)* ˜

set p_ld_r = h*1 l*˜

set run_r = l*1 h*˜

option simperiod = 32

option sigunit = 100n

option outunit = 1n

option outacc = 10p

option level = 3

plot phi1_r phi2_r out[0..7] fb_in

The output for this simulation is shown below:

phi1_r

phi2_r

out[0]

out[1]

out[2]

out[3]

out[4]

out[5]

out[6]

out[7]

fb_in

0 500e-9 1000e-9 1500e-9 2000e-9 2500e-9 3000e-9

Notice the slopes on the signals out[0..7] and the spikes on fb_in. Fb_in is a feedback
signal which is being constructed from the signals out[0..7] to generate the next number.

The Nelsis IC Design System



Sls User’s Manual 36

Next we add the line

option tdevmin = 0.7 tdevmax = 1.5

to the command file in order to perform a min-max delay simulation. The result shows

that now, during signal transitions, the minimum and maximum voltage wav eform do no

longer coincide. Also, at fb_in more spikes become visible.

phi1_r

phi2_r

out[0]

out[1]

out[2]

out[3]

out[4]

out[5]

out[6]

out[7]

fb_in

0 500e-9 1000e-9 1500e-9 2000e-9 2500e-9 3000e-9

This way we are able to study the influence of parameter variations and model accuracy
on the simulation results and we for example see that spikes are possible on fb_in at the
end of each positive pulse of phi1.

The Nelsis IC Design System



Sls User’s Manual 37

When we increase the uncertainty in the delay times and use

option tdevmin = 0.3 tdevmax = 1.9

the result will be as follows:

phi1_r

phi2_r

out[0]

out[1]

out[2]

out[3]

out[4]

out[5]

out[6]

out[7]

fb_in

0 500e-9 1000e-9 1500e-9 2000e-9 2500e-9 3000e-9

Notice that now the timing deviations have become too large and that the X state results
at all the output nodes. In fact, the simulator shows that when timing deviations may
occur that are within the boundaries as specified by tdevmin and tdevmax the circuit will
most likely not be working correctly.

The Nelsis IC Design System



Sls User’s Manual 38

5. TROUBLESHOOTING

In this chapter some suggestions are given to solve troubles which may occur during
simulation.

Tr ouble Possible cause

syntax error The statement or command did not obey the corresponding
syntax description as given in this manual.

no signal delay You didn’t use simulation level 3.

The output accuracy (option outacc) is too large.

simulation never stops You used a repetitive input signal and didn’t specify a
simulation end time (option simperiod).

races occurred To find the cause of races: use option step = on and print all
nodes for which a race occurred. For more information, see
the flip flop simulation example and the explanation to the
option print races.

A (inappropriate) warning about the occurrence of races
may also be given if the real logic depth of the circuit is
more than the value of maxldepth. In that case, enlarge the
value of maxldepth.

wrong output values You didn’t set all supply nodes (e.g. vdd and gnd) in the h
or l state.

You did forget to connect nodes by means of a net
statement.

For the circuit simulated right logic states can only be
simulated at level 2 or 3.

Some transistors have a wrong length or width.

If you can’t find it: recursively print the gate nodes of the
transistors that make up the wrong signal and/or use option
step = on.

Finally: when you use analog circuits like sense amplifiers
it might be possible that the simulator is not capable of
determining the right logic states. In that case a solution is
to replace those circuit parts by gate level descriptions.

The Nelsis IC Design System



Sls User’s Manual 39

References

1. R.E. Bryant, ‘‘Switch level modeling of MOS Digital Circuits,’’ Proc. ICCC Conf.,
pp. 68-71 (1982).

2. R.E. Bryant, ‘‘A switch-level model and simulator for MOS digital systems,’’ IEEE

Tr ans. Computers vol. C-33 pp. 160-177 (Feb. 1984).

3. A.J. van Genderen, ‘‘Switch Level Timing Simulation,’’ M.S. Thesis (85-49), Delft
University of Technology (June 1985).

4. P.M. Dewilde, A.J. van Genderen, and A.C. de Graaf, ‘‘Switch Level Timing
Simulation,’’ Proc. ICCAD Conf., pp. 182-184 (Nov. 1985).

5. A.J. van Genderen, ‘‘SLS: An Efficient Switch-Level Timing Simulator Using Min-
Max Voltage Wav efroms,’’ Proc. VLSI 89 Conference, Munich, pp. 79-88 (August
1989).

6. A. Vladimirescu, K. Zhang, A.R. Newton, D.O. Pederson, and A. Sangiovanni-
Vincentelli, SPICE Version 2G User’s Guide,, Univ of California, Berkeley (Aug.
1981.).

7. O. Hol, ‘‘FUNCTIONAL SIMULATION USER’S MANUAL,’’ The Nelsis IC
Design System Documentation, Delft University of Technology (1988).

8. N. Wirth,, ‘‘What can we do about the unnecessary diversity of notation for
syntactic definitions ?,’’ Comm. ACM 20 (Nov. 1977).

9. A.J. Schooneveld,, ‘‘Determination of SLS Transistor Model Parameters,’’
taakverslag 87-84, Delft University of Technology, (April 1987).

The Nelsis IC Design System



CONTENTS

1. INTRODUCTION .................................................................................................... 1

2. DESCRIPTION OF THE SLS-PACKAGE .............................................................. 2

3. THE DESCRIPTION OF NETWORKS .................................................................. 4
3.1 General conventions ........................................................................................... 4
3.2 Network Description.......................................................................................... 6
3.3 Declarations ....................................................................................................... 6
3.4 Network Structure.............................................................................................. 6
3.5 External Network Declaration ........................................................................... 12
3.6 Global Nets ........................................................................................................ 13
3.7 Examples............................................................................................................ 14

4. SIMULATION AND SIMULATION COMMANDS .............................................. 19
4.1 Simulation Control Commands ......................................................................... 19
4.2 Examples............................................................................................................ 29

5. TROUBLESHOOTING ............................................................................................ 38

References ...................................................................................................................... 39

- i -



LIST OF FIGURES

Figure 1. Information flow diagram of the SLS-package. ............................................ 2

Figure 2. Transistor diagram and network description of the latch circuit. .................. 14

Figure 3. Hierarchical description of the latch circuit. ................................................. 15

Figure 4. Transistor diagram and network description of the shift circuit.................... 17

Figure 5. Transistor diagram and network description of the flipflop circuit. .............. 18

Figure 6. Construction of an input signal...................................................................... 21

- ii -



LIST OF TABLES

TABLE 1. Lexical constructions................................................................................... 5

TABLE 2. Syntax of the network part. ......................................................................... 6

TABLE 3. Syntax of the declaration part...................................................................... 6

TABLE 4. Syntax of the network body......................................................................... 7

TABLE 5. Syntax of an extern network declaration. .................................................... 12

TABLE 6. Syntax of the simulation control part. ......................................................... 19

- iii -


