
Space Transistor Data Structures

S. de Graaf

Circuits and Systems Group

Faculty of Electrical Engineering,

Mathematics and Computer Science

Delft University of Technology

The Netherlands

Report EWI-ENS 10-02

June 15, 2010

Copyright © 2010 by the author.

All rights reserved.

Last revision: July 14, 2010.

Space Transistor Data Structures 1

1. INTRODUCTION

With the term transistor in this report i want only describe the Field Effect Transistor

(FET) implementation as specified in the "fets" section of the space technology file.

The FET is an unipolar transistor which has in general three connections: the source (S),

the drain (D) and the gate (G). In some occasions there is a fourth connection for the

substrate or bulk (B).

The FET contains a conducting channel between the source (S) and the drain (D), of

which the conductance can be controlled by the electric field of the voltage on the gate

(G). When conducting, the current can flow in both directions, from source to drain or

drain to source. Thus, the source and drain connections are equal and can be

interchanged. This transistor is most times used as a switch in digital circuits. The P-

channel type FET is only conducting by a low or zero voltage on the gate and the N-

channel type is only conducting by a high enough positive voltage on the gate.

The connections (or pins) of the transistor are connected to circuit nodes. Nodes are

conducting parts in the circuit. The smallest part of a node is a subnode, which can be in

a layout tile or on the edges of the layout tile in the case when resistors are extracted.

In case nodes are connected by resistors, we speak about a node group. The node group

stands for a complete conducting wire or path. When the last node of the group becomes

ready, then the group becomes ready. After that it can be reduced (node reduction).

Important nodes can not be deleted. That are nodes connected with terminals or labels or

connected with transistor pins.

When a layout is extracted, the layout masks are combined and scanned from left to right.

The layout is split up in tiles of which the edges first are processed. Function enumPair is

called for each edge between two tiles and is used to recognize edge elements. When all

edges of a tile are done the tile becomes ready and function enumTile is called. This

function handles all surface elements and does the resistor mesh generation.

After enumTile is ready function clearTile is called. This function deletes the tile, but

because the tile contains subnodes, first all the subnodes of the tile must be deleted

(function subnodeDel). In case a tile also contains a part of a transistor, also subtorDel

must be done. If subnodeDel deletes last subnode of a node, the node becomes ready.

Function readyNode is called, it decrements the group node counter and shall put the

node in the delay queue (if it is unimportant and can be eliminated). Only if the delayed

queue becomes full, one node with the lowest degree is eliminated. This can be a node of

one of the not ready node groups.

When the last node of a group becomes ready (the group notReady counter becomes

zero), then function readyGroup is called. This function shall first eliminate all delayed

nodes in lowest degree order. After that a number of reduction heuristics are done on the

remaining nodes. The group is outputted (calling function outGroup and outNode) when

all neighbor groups are ready. This, because the reduction heuristics must first be done

for neighbor groups. Only thereafter no connections are more changed.

The Nelsis IC Design System

Space Transistor Data Structures 2

2. THE TOR DAT A STRUCTURE

A tile can only point to one transistor (tor) data structure. When the gate of the transistor

is split in pieces, then different tiles points to the same transistor. Function subtorNew is

used when a tor element surface condition match is found. Note that this mask condition

must be the condition for the gate of the transistor. In cases that a neighbor tile already

contains the transistor function subtorCopy is used. In some occasions subtorJoin must

be used, this can only happen by some fancy gate layouts. When a tile is finished

function clearTile is called. When a tor is in the tile, clearTile shall call function

subtorDel for it. Function subtorDel shall unlink the tile from the tile tor list. When the

last tile of the gate becomes ready, tor->subs becomes NULL, then subtorDel shall call

function outTransistor.

(3) (2) (1)

subs

next_tornext_tor next_torTILETILETILE

tor tortor

TOR

t1

t2

t0

a

b

gate

gate

gategate

gate

a

a

b

c a = subtorNew

b = subtorCopy

c = subtorJoin

gate

t3

b

When doing enumPair of two tiles, doing the edge between tile t0 and t1, tile t0 does not

contain a transistor gate and t1 does contain one. Therefor subtorNew is done for tile t1.

For tile t2 subtorCopy can be done, however not from tile t0, but from tile t1. This is

possible1 because tile t2->stb (stitch bottom) points to tile t1.

In the second figure are two separate tor structures allocated. When both tors become

together, they must be joined. One tor structure is deallocated and its tile is linked in the

list of the other tor and it must point to the other tor.

1. Using the stitch bottom pointer eliminates in most cases the use of function subtorJoin. I hav e tested
this with the FreePDK45demo "I8051_ALL" example. This gives more than 2 % time improvement.

The Nelsis IC Design System

Space Transistor Data Structures 3

3. THE NODE-TOR-LINK DAT A STRUCTURE

Between the TOR data structure and the NODE data structure there is made a

nodeTorLink (nTL) data structure. This is done by function portAdd, which is called by

enumTile. The portAdd is done for the gate node and optional for the bulk node. Note

that for the drain and source nodes no portAdd is done (obsolete code). Note that the

TOR data structure only is made in the extract pass (not in a prepass). Note that by

resistance extraction resEnumTile is called. In that case a tile can contain different nodes

at each tile corner. If tile split is true, then always the top-right node is used, and portAdd

is always called to replace a previous nodeTorLink by a new one. This is not done by

enumTile, because the nodeTorLink points always to the correct node and by node joins

function nodeRelJoin takes care to relink it correctly.

Function portAdd calls nTLinkAdd to add a nodeTorLink. There is only made a new

nodeTorLink between the NODE and the TOR of the requested type (gate or bulk) if it is

not already there. Because a TOR data structure only can point with member "gate" (or

"bulk") to one nodeTorLink, therefor the nextT and prevT pointers of the nodeTorLink

structure are obsolete. However, the NODE data structure can point with member "ports"

to different nodeTorLink structures. There is made a double linked list with nextN and

prevN nodeTorLink members. The nodeTorLink list can contain two nodeTorLinks to the

same transistor if the gate and bulk are connected with each other. Note that a NODE can

only have one nodeTorLink of a type (g/b) to one transistor.

prevN prevN

nextN

nTLnTLnTL

n

t t t

type=g type=g type=b

TOR

gategate

(3) (2) (1)

NODE

ports

bulk

n n
nextN

prevN

nextN

TORTOR

Because the notReady counter of the node group is incremented for each nodeTorLink a

node group can only become ready after all nodeTorLinks of the group are deleted. Thus,

after the last gate tile of a transistor is done and subtorDel and outTransistor is called.

Function outTransistor shall call function nTLinkDel to delete the gate/bulk nodeTorLink.

Thus, the nodeTorLink data structure is also a lock which prevents that a node group

becomes ready and also prevents that a ready node becomes delayed. Note that

outTransistor also sets the "term" flag of the gate (and bulk) node. This is also enough for

readyNode not to delay the node.

The Nelsis IC Design System

Space Transistor Data Structures 4

4. THE DRAIN/SOURCE-BOUNDARY DAT A STRUCTURE

A transistor gate area must be surrounded by two drain/source areas. Function enumPair

shall call function updateTorEdge for one or both of the tiles, if a transistor gate is in the

tile. When it is not an internal gate edge, then the edge length is added to the total

perimeter of the gate. When a drain/source conductor is found in the adjacent tile, then

the edge length is also added to the total ds-perimeter around the gate and function

torBoundary is called. Note that by resistance extraction the nodes on the edge are joined

together. When the transistor uses a different conductor for the drain and source area,

then the correct type (d or s) must be given to function torBoundary. But normally the

drain and source conductor are equal and type ’x’ is used.

TOR
type=x type=x

boundaries
BDRBDR

(2) (1)

dsCond dsCondpoints

x/y

x/y

points

x/y

x/y
SNSN

node node

NODE NODE

next next

term=1term=1

totPerimeter

dsPerimeter

Function torBoundary sets the "term" flag of the d/s node, because the node may not be

delayed and eliminated. If the transistor already has a boundary data structure, then is

checked of the existing boundary must be extended. It can also be possible, that two

points are found for the new boundary edge. In that special case two existing boundaries

must be joined together. Thus, it is also possible that the complete gate is surrounded by

one closed boundary.

When it is a new boundary, a new boundary data structure is allocated and also two point

data structures. Besides that, also a boundary subnode is allocated and this subnode

points to the d/s node. This is done with function subnodeCopy. Note that this is a very

special subnode, because it is not living in a tile. This subnode is a lock for the d/s node,

because the d/s node can only become ready if this boundary subnode is deleted (with

subnodeDel) and this is done by function outTransistor.

Thus, the node groups of all the transistor pins can only become ready after the transistor

(gate area) is ready.

Function outTransistor shall attach a netEq data structure to the d/s nodes with pin type

’x’. The first d/s node which is outputted by function outNode receives type ’d’ and the

other node type ’s’. This is possible because both netEq’s are connected with each other

(by a netEq ring).

The Nelsis IC Design System

Space Transistor Data Structures 5

5. THE NODE TERM FLAG

The node term flag is inited by function createNode normally to 0, but is inited to 2 when

optFineNtw is true (option -%f). The node term flag is set to 1 for each terminal/label

connected to the node (see function nameAdd). Also the term flag of nodes connected to

transistor pins are set to 1. This make these nodes more important, see function

readyNode, a node with the term flag set shall not be delayed and eliminated. Only by

some reduction heuristics a ready node of a ready group can be eliminated (in that case a

nodeRelJoin is done).

For drain/source pins the node term flag is set by function torBoundary. Howev er, for the

gate and bulk pins the node term flag is set in function outTransistor and only when the

transistor is not skipped. Therefor the node term flag does not need to be cleared for

these pins. Note that these nodes can only become ready after nTLinkDel, when the node

"ports" member is cleared.

For a drain/source pin, however, the node term flag should be cleared if the transistor is

skipped. For example, because the transistor has only one drain/source pin. This is

however not possible, because we can not figure out if other transistors are connected to

the same node. We can only find all other transistors via the node "ports" member, if also

for drain/source nodes nodeTorLinks are made. See for example function termNodeClear

which is used to clear the node term flag for BJTs. The node term flag can only be

cleared if (1) term < 2 and (2) the node has no "names" and (3) the node has no other

devices (no other BJTs). Note that the other devices can be found via polnode-tor-links.

However otherDevices does not look for normal transistors via node-tor-links!

Thus we have a problem to clear the node term flag correctly. Maybe we must use

another bit in the term flag for transistors as well. Then we only need to look for other

transistors. We can also only set the node term flag for drain/source nodes in

outTransistor when we know that the transistor is not skipped. Note that a drain/source

node can not be ready, because we use a special boundary subnode. Only if this

boundary subnode is deleted (subnodeDel) the node can become ready.

The Nelsis IC Design System

Space Transistor Data Structures 6

6. USING POLNODES FOR DRAIN/SOURCE AREAS

We can use polnodes for the drain/source areas and store the area and perimeter of the

drain/source in the polnode data structure. We need only do this when a dscap is

specified in the technology file for the transistor. The area of the dscap can be smaller

than the area of the polnode. Therefor we must use the surface condition of the dscap to

set the drain/source area and we must use the edge condition to set the drain/source

perimeter. When we use polnodes, we don’t need to generate ground capacitances for the

dscaps. With these polnodes space can calculate the d/s parameters itself.

Function torBoundary assigns the polnode to the new boundary data structure if the tor

element data structure tells us that the transistor has dsCap. The given drain/source

subnode must in that case contain a polnode. Also a polnode-Tor-Link (pTL) is added

(with function pnTorLinkAdd). Only a polnode can point to this pTL and must have only

pTL for each transistor. The pTL must be of type TORELEM, because then we know

that it points to a transistor. Other types points to BJT transistors.

type=x
boundaries

BDR

dsCond

SN
node

NODE

next

term=1 wtot / tcntnL

pn

pn

type=TOR

pTL

tors

pols nodes

tor

w = dsPerim

tor_nr
l = totPerim

TOR

area / peri

PN

next

subs

You see that the boundary itself also points to the polnode. Note that the BJT data

structure does this with a polnode array for its pins. When the subnode is deleted, the

subnode cannot be used for this purpose. Note that the node and polnode are also

connected with each other by the nodeLink (nL) data structure. A polnode has always a

connection with a node and both belong always to the same node group. When no

resistors are extracted then one node can have more than one polnode, because different

conductors can be joined together by vias. When resistors are extracted then one polnode

normally has more than one node, because all nodes of a conductor in a tile points to the

same polnode. Note that a pnTorLink is not a locker (like the nodeTorLink), however, the

nodeLink is a locker (and increments group->notReady).

The Nelsis IC Design System

Space Transistor Data Structures 7

7. TESTING WITH FREEPDK45 I8051_ALL

The FreePDK45 technology file contains a fets section with drain/source-cap definitions

to get the drain/source parameters in the spice netlist (see detail below).

fets:

name:condition_list:mask_g mask_ds [ds_cap] [:mask_b]

nenh:(!nwell n_active poly):poly active (!nwell n_active !poly):@sub

penh:(nwell p_active poly):poly active (nwell p_active !poly):nwell

With the new space extractor, which is not using subtorJoin and extracts the drain/source

parameters itself with polnodes, the I8051_ALL cell can be extracted with the following

statistics:

% space -Fv I8051_ALL

nodes : 54016

mos transistors : 126069

memory allocation : 9.198 Mbyte

user time : 21.2 second

With the space -i option we can find out that 165555 polnodes are used.

The old method can still be used by specifying the "old_ds_caps" parameter:

% space -Fv -Sold_ds_caps I8051_ALL

nodes : 54017

mos transistors : 126069

d/s capacitances : 83077

memory allocation : 9.533 Mbyte

user time : 20.8 second

You see that the old method is faster and uses one more node (GND). Note that the

amount of d/s capacitances is too low, this because the d/s nodes are joined with vias.

When the d/s parameters are omitted the extraction is much faster:

% space -Fv -Somit_ds_caps I8051_ALL

nodes : 54016

mos transistors : 126069

memory allocation : 9.094 Mbyte

user time : 18.2 second

Note that space detects 2260 transistors with only one drain/source terminal. Default,

space does not add d/s terminals (use parameter "add_ds_terms" if you want this) and

does not skip these transistors. The maximum internal kept nodes and mosfets is not

equal for the first two cases. The first case kepts more nodes (2628 vs. 2594) and fets

(371 vs. 180), this because the fets are later ready.

Capacitance extraction (option -C) for the above 3 cases gives the following results:

user time (second): 37.1 36.6 35.1

Resistance extraction (option -r) for the above 3 cases gives the following results:

user time (second): 9600.5 9555.1 9443.8

The Nelsis IC Design System

Space Transistor Data Structures 8

8. SEPARATE D/S BOUNDARIES

Parameter "separate_ds_boundaries" can be used to set separate d/s boundaries. Default,

when "off", variable optDsConJoin is TRUE. This gives the following default behaviour:

8.1 When there is NO d/s boundary

The transistor does not have any d/s terminal pins. There are no terminals added, because

this is not possible. Use parameter "omit_incomplete_tors" to skip the transistor.

8.2 When there is only ONE d/s boundary

The transistor does not have two d/s terminal pins. Default, the first d/s terminal is also

used for the second terminal. Thus, the d/s terminals are "joined" (are not separate). This

is only possible if the transistor does not have separate drain and source conductors. The

transistor can be skipped with parameter "omit_incomplete_tors".

Note that with "separate_ds_boundaries=on" no second d/s terminal is added.

8.3 When there are exact TWO d/s boundaries

Then normally everything is ok and no d/s terminals are skipped. Only exception, if there

are two drain or two source terminals. Default, with optDsConJoin is TRUE, try to skip

one (if unconnected).

8.4 When there are more than TWO d/s boundaries

Default, with optDsConJoin is TRUE, extra d/s terminals can be skipped. This is only

possible when one of the d/s terminal nodes is unconnected. The netEquiv "termSkip"

flag is used for this purpose. With "separate_ds_boundaries=on" no d/s terminals are

skipped. Thus, a transistor can have too many d/s terminal pins.

8.5 What is an unconnected node?

An unconnected node is a node which does not have resistors or capacitors and does not

have label or terminal names. When this unconnected node does have a netEquiv to a

transistor it is not unconnected, but if it is the only netEquiv it has, then this transistor pin

is not connected to something else.

The Nelsis IC Design System

Space Transistor Data Structures 9

9. RING OF D/S BOUNDARIES

The netEquivalences of d/s terminal nodes are always linked together in a d/s-ring.

The d/s-ring is used for:

1. Setting the ’x’ names to ’d’ and ’s’ names. The first outputted (not skipped)

terminal gets the name ’d’. All other terminals the name ’s’.

2. For skipping d/s terminal nodes by optDsConJoin is TRUE, but only when there

are too many and possibly one (or more) can be skipped (if unconnected).

(1) (2) (3)

dsRing

dsRing

(1) (2)

term=x term=x term=x
termSkip=1 termSkip=1 termSkip=1

netEq netEq netEq

netEq netEq
nextDsRing

nextDsRing nextDsRing nextDsRing

nextDsRing

term=x
termSkip=0

netEq
(1)

dsRing

nextDsRing

term=x term=x
termSkip=0termSkip=0

We don’t want to use the d/s-ring anymore. Because for the new implementation we

don’t want to set the ’x’ names in outNode. We must set the names when outputting the

transistor with its parameters. Also the possible d/s terminal skipping method is not

important.

The Nelsis IC Design System

